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SOME DUAL LOGIC WITHOUT TAUTOLOGIES

ANETTA GÓRNICKA, ARKADIUSZ BRYLL

Abstract

On this paper we consider a logic dual to the logic CRA and prove that it does not
contain tautologies.

1. Introduction

We consider a logic with the strongly adequate dual matrix and the empty
set of tautologies. In a logic without tautologies there are no axioms, thus
all theorems are proved on the base of some premisses with the use of fixed
inference rules. In our approach a logic will be identified with a structural
consequence operation 1.

Let S be a set of formulas of a propositional language.

A function C mapping 2S into 2S is a consequence if it fulfills the following
conditions:

(1) X ⊆ C(X),

(2) X ⊆ Y ⇒ C(X) ⊆ C(Y ),

(3) C(C(X)) ⊆ C(X),

for X,Y ∈ 2S . Then,

(4) C(X ∪ C(Y )) = C(X ∪ Y ).

The consequence dual to a consequence C, denoted by dC, is defined as
follows [11]:

Definition 1.

α ∈ dC(X)⇔ ∃Y (Y ⊆ X ∧ card(Y ) < ℵ0 ∧
⋂
{C({β}) : β ∈ Y ⊆ C({α})},

for any α ∈ S and any X ⊆ S.
1Terms of a logic and a consequence will be used interchangeably
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The dual consequence dC has, among others, the following properties [2]:

Lemma 1. a

For α, β ∈ S:
a. β ∈ dC({α})⇔ α ∈ C({β}),

b. dC(∅) = {γ : C({γ}) = S}.

Therefore,

Corollary 1. γ /∈ dC(∅)⇔ C({γ}) 6= S.

With every propositional language J = (S,F), where F is a set of logical
operators, we can associate an algebra A = (U, f) similar to J . By distin-
guishing in A a subset V (∅ 6= V ⊂ U), which we call the set of distinguished
values, we obtain a logical matrix corresponding to the language J:

M = (U, V, f).
The dual matrix to the matrix M is defined by

Md = (U,U − V, f).
Matrices M i Md differ only with respect to the set of distinguished

values.
A consequence can be given by means of a set of rulesR (rule consequence

CR ) or by means of a logical matrix M (matrix consequence CM). Here
are the definitions:

Definition 2. α ∈ CR(X) ⇔ (there exists a proof of α based on X and
R), (X ∪ {α} ⊆ S).

Definition 3. α ∈ CM(X)⇔ ∀h∈Hom[h(X) ⊆ V ⇒ h(α) ∈ V ],
where Hom denotes the set of all homomorphisms of J into A.

Both CR and CM fulfill the conditions of a consequence. Moreover, CR
is a finitistic consequence.

Let E(M) denote the content of a matrix M, i.e. the set of all its tau-
tologies:

(5) E(M) = {α ∈ S : ∀h∈Hom(h(α) ∈ V )}.
By the definition

(6) E(M) = CM(∅).
If CM(∅) = ∅, then M does not contain any tautologies.
A logical matrix M is said to be strongly adequate for a logic C if C(X) =
CM(X) for every X ⊆ S.
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Let T be a binary functor on S. We generalize T in the following way:

Definition 4. a

a. T(α) = α,
b. T(α, β) = Tαβ,
c. T(α1, . . . , αn, αn+1) = T(T(α1, . . . , αn), αn+1).

It is easy to prove by means of induction the following facts.

Lemma 2. a

a. If a consequence C has, with regard to a functor T, the property

C({Tαβ}) = C({α, β}),
then

C({T(α1, . . . , αn)}) = C{α1, . . . , αn}).
b. If a consequence C has, with regard to a functor T, the property

C({Tαβ}) = C({α}) ∩ C({β}),
then

C({T(α1, . . . , αn)}) =
n⋂
i=1

C({αi}).

In our further considerations we apply the well known Lindenbaum The-
orem [10]:

Theorem 1. For every α ∈ S and X ⊆ S
α /∈ C(X)⇒ ∃Y⊆S(C(Y ) = Y ∧ α /∈ Y ∧ ∀β/∈Y (α ∈ C(Y ∪ {β}))).

The set Y fulfilling the above condition is called a relatively maximal
supersystem of X with regard to α. For every α /∈ C(X) there can exist
many different relatively maximal supersystems of X. The set of all such
supersystems shall be denoted by LαX .

2. Main results

In [7] the logic CRA
with the functor A of the alternative is considered.

This logic is based on the set RA = {r1, r2, r3, r4} of inference rules, where

r1 :
α

Aαβ
, r2 :

Aαα

α
, r3 :

Aαβ

Aβα
, r4 :

AAαβγ

AαAβγ
.

The matrix
Ma = ({0, 1}, {1}, {a}),
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where a(x, y) = max(x, y), x, y ∈ {0, 1}, is strongly adequate for the
logic CRA

.
It is proven in [7] that

Theorem 2. CRA
(X) = CMa(X) for every X ⊆ S.

The logic CRA
does not contain tautologies since

(7) CRA
(∅) = CMa(∅) = E(Ma) = ∅

The equality E(Ma) = ∅ results from the fact that for any formula α the
homomorphism h0 assigning to all propositional variables the value 0 fulfills
the condition h(α) = 0. Therefore, it is not true that ∀h∈Homh(α) = 1.

In [7] it is also proven that

Lemma 3. For every X ⊆ S and all α, β ∈ S
CRA

(X ∪ {α}) ∩ CRA
(X ∪ {β}) ⊆ CRA

(X ∪ {Aαβ}).

Applying the rules r1 i r3 one can show that

Lemma 4. For every X ⊆ S and all α, β ∈ S
CRA

(X ∪ {Aαβ}) ⊆ CRA
(X ∪ {α}) ∩ CRA

(X ∪ {β}).

Proof. By means of r1 we obtain Aαβ ∈ CRA
(α) and Aβα ∈ CRA

(β).
Applying r3 we get Aαβ ∈ CRA

({Aβα}). By monotonicity of CRA
we have

CRA
({Aαβ}) ⊆ CRA

({β}). Then Aαβ ∈ CRA
({β}. By the property (4) of

a consequence, CRA
(X ∪ {Aαβ}) ⊆ CRA

(X ∪CRA
({α})) = CRA

(X ∪ {α}).
Similarly CRA

(X ∪ {Aαβ}) ⊆ CRA
(X ∪CRA

({β})) = CRA
(X ∪ {β}). Thus

CRA
(X ∪ {Aαβ}) ⊆ CRA

(X ∪ {α}) ∩ CRA
(X ∪ {β}). �

From the above Lemmas we conclude that

Theorem 3. For every X ⊆ S and all α, β ∈ S
CRA

(X ∪ {Aαβ}) = CRA
(X ∪ {α}) ∩ CRA

(X ∪ {β}).

Therefore,

Corollary 2. For all α, β ∈ S
CRA

({Aαβ}) = CRA
({α}) ∩ CRA

({β}).

Let us consider the consequence CRd
A
based on the following set of infer-

ence rules:
RAd = {rd1 , rd2}, where rd1 :

Aαβ

α, β
, rd2 :

α, β

Aαβ
.

The above rules express the classical property of the alternative: the
alternative is false if and only if both its components are false. It is clear
that the consequence CRd

A
has the following property:
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Lemma 5. For every X ⊆ S and for all α, β ∈ S

CRd
A
(X ∪ {Aαβ}) = CRd

A
(X ∪ {α, β}).

Therefore,

Corollary 3. For all α, β ∈ S

CRd
A
({Aαβ}) = CRd

A
({α, β}).

The matrix consequence CMd
a
with a matrice Md

a = ({0, 1}, {0}, {a}}
dual with respect to the matrix Ma is defined as follows:

Definition 5. For every α ∈ S

α ∈ CMd
a
(X)⇔ ∀h∈Hom(h(X) ⊆ {0} ⇒ h(α) = 0),

where Hom is the set of all homomorphisms, i.e., functions h : S −→ {0, 1}
such that

h(Aαβ) = a(h(α, β)).

The set of tautologies of the matrix Md
a is empty, i.e.

(8) E(Md
a) = CMd

a
(∅) = ∅.

It results from the fact that for the homomorphism h assigning to all propo-
sitional variables the value 1 we have h(α) = 1 for any α.

Let us notice that the set CMd
a
(X) is closed with regard to the rules from

RdA, i.e.

(9) CRd
A
(CMd

a
(X)) ⊆ CMd

a
(X), X ⊆ S.

We show that the matrix Md
a is strongly adequate for the logic CRd

A
:

Theorem 4. CRd
A
(X) = CMd

a
(X), for every X ⊆ S.

Proof. The inclusion CRd
A
(X) ⊆ CMd

a
(X) results from (9) since CRd

A
(X) ⊆

CRd
A
(CMd

a
(X)) ⊆ CMd

a
(X).

To prove CMd
a
(X) ⊆ CRd

A
(X) let us assume that α /∈ CRd

A
(X). By Theorem

1, there exists a set Y0 ∈ LαX such that

(10) X ⊆ Y0,

(11) CRd
A
(Y0) = Y0,

(12) α /∈ Y0,

(13) ∀β/∈Y0(α ∈ CRd
A
(Y0 ∪ {β})).
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According to Lemma 5 and property (11), we have

(14) Aβγ ∈ Y0 ⇔ (β ∈ Y0 ∧ γ ∈ Y0).

Indeed, for any β, γ ∈ S we get:
Aβγ ∈ Y0 ⇒ Y0 ∪ {Aβγ} = Y0 ⇒ CRd

A
(Y0 ∪ {Aβγ}) = CRd

A
(Y0) = Y0 =

CRd
A
(Y0 ∪{β, γ}). As β, γ ∈ CRd

A
(Y0 ∪{β, γ}) = Y0, so β, γ ∈ Y0. Therefore,

β, γ ∈ Y0 ⇒ Y0 ∪ {β, γ} = Y0 ⇒ CRd
A
(Y0 ∪ {β, γ}) = CRd

A
(Y0) = Y0 =

CRd
A
(Y0 ∪ {Aβγ}). Since Aβγ ∈ CRd

A
(Y0 ∪ {Aβγ}) = Y0, then Aβγ ∈ Y0.

We can consider the following homomorphism hY0 : S −→ {0, 1} based on
the set Y0:

(15) hY0(α) =

{
0, gdy α ∈ Y0
1, gdy α /∈ Y0.

We show that hY0 is a homomorphism. By (14) i (15) we get:
hY0(Aβγ) = 0 ⇔ Aβγ ∈ Y0 ⇔ β, γ ∈ Y0 ⇔ hY0(β) = 0 ∧ hY0(γ) = 0 ⇔
a(hY0(β), hY0(γ)) = 0;
hY0(Aβγ) = 1 ⇔ Aβγ /∈ Y0 ⇔ β /∈ Y0 ∨ γ /∈ Y0 ⇔ hY0(β) = 1 ∨ hY0(γ) =
1⇔ a(hY0(β), hY0(γ)) = 1.
Thus,

(16) hY0(Aβγ) = a(hY0(β), hY0(γ)).

According to (10), hY0(X) ⊆ hY0(Y0) for anyX ⊆ S. As hY0(Y0) = {hY0(δ) :
δ ∈ Y0} = {0}, then hY0(X) ⊆ {0}.
By (12) we have hY0(α) = 1. Then, ∃h∈Hom(h(X) ⊆ {0} ∧ h(α) = 1) and,
by Definition 5, we obtain α /∈ CMd

a
(X). Therefore, CMd

a
(X) ⊆ CRd

A
(X)

and having CRd
A
(X) ⊆ CMd

a
(X) we get CRd

A
= CMd

a
. �

3. Final remarks

We show that the logic CRd
A

is dual to the logic CRA
(in the sense of

Definition 1).
First, we prove by means of induction (with respect on the complexity of
formulas) that

Lemma 6. dCRA
(∅) = ∅.

Proof. If α is a variable, then CRA
({α}) 6= S, because we cannot get (by

means of the rules from RA) any formula from S starting from a single
propositional variable.
Assume inductively that CRA

({α1}) 6= S i CRA
({α2}) 6= S holds for for-

mulas α1, α2. Then, by Corollary 2, regarding the formula Aα1α2 we get
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CRA
({Aα1α2}) = CRA

({α1}) ∩ CRA
({α2}) 6= S. Then, according to Corol-

lary 1, we have CRA
({γ}) 6= S for any γ ∈ S and then γ /∈ dCRd

A
(∅), so

dCRA
(∅) = ∅. �

From Theorem 4 and property (8), we have CRd
A
(∅) = ∅, then, by Lemma

6:

Lemma 7. dCRA
(∅) = CRd

A
(∅).

Now, we prove

Lemma 8. If α ∈ CRd
A
(X), then α ∈ dCRA

(X) for any X ⊆ S.

Proof. Let α ∈ CRd
A
(X). Since CRd

A
is a finitary consequence, then there

exists a finite subset Y0 of the setX such that α ∈ CRd
A
(Y0). Let us notice

that Y1 6= ∅. Indeed, if Y1 = ∅, then α ∈ CRd
A
(∅) and as CRd

A
(∅) = ∅,

we get α ∈ ∅, which leads to a contradiction. Thus, let us assume Y0 =
{β1, . . . , βn}. By Corollary 3 and Lemma 2a., we obtain

α ∈ CRd
A
({β1, . . . , βn}) = CRd

A
({A(β1, . . . , βn)}).

Then, by Theorem 4, α ∈ CMd
a
({A(β1, . . . , βn)}), so

∀h∈Hom(h(A(β1, . . . , βn)) = 0⇒ h(α) = 0).

We get ∀h∈Hom(h(α) = 1 ⇒ h(A(β1, . . . , βn) = 1), then A(β1, . . . , βn) ∈
CMa({α}) = CRA

({α}), hence, by Corollary 2 and Lemma 2b we conclude
that ⋂

{CRA
({β}) : β ∈ Y0} ⊆ CRA

({α}).
Therefore,

∃Y (Y ⊆ X ∧ card(Y ) < ℵ0 ∧
⋂
{CRA

({β}) : β ∈ Y ⊆ CRA
({α})).

According to Definition 1, we get α ∈ dCRA
(X).

�

Lemma 9. If X 6= ∅, then dCRA
(X) ⊆ CRd

A
(X)) for every X ⊆ S.

Proof. Let X 6= ∅ and let us suppose α ∈ dCRA
(X). By Definition 1, there

exists a set Y0 such that

Y ⊆ X ∧ card(Y ) < ℵ0 ∧
⋂
{CRA

({β}) : β ∈ Y ⊆ CRA
({α})}.

Let us consider two cases: Y0 = ∅ or Y0 6= ∅.
Let Y0 = ∅, then

⋂
{CRA

({β}) : β ∈ ∅} = S. Therefore, CRA
(α) = S

and ∀γ∈S(γ ∈ CRA
({α}). According to our assumption X 6= ∅, there is

γ1 ∈ X, hence γ1 ∈ S. Therefore γ1 ∈ CRA
({α}) = CMa({α}). By Definition

of the matrix consequence we have ∀h∈Hom(h(α) = 1 ⇒ h(γ1) = 1), so
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∀h∈Hom(h(γ1) = 0 ⇒ h(α) = 0), hence α ∈ CMd
a
({γ1}) = CRd

A
({γ1}).

However, CRd
A
({γ1}) ⊆ CRd

A
(X), then α ∈ CRd

A
(X).

If Y0 = {β1, . . . , βn}, then, by Corollary 2 and Lemma 2b, we obtain that⋂
{CRA

({β}) : β ∈ Y1} = CRA
({A(β1, . . . , βn)}, so CRA

({A(β1, . . . , βn)}) ⊆
CRA

({α}), and hence A(β1, . . . , βn) ∈ CRA
({α}) = CMa({α}). Therefore,

∀h∈Hom(h(α) = 1 ⇒ h(A(β1, . . . , βn) = 1), so ∀h∈Hom(h(A(β1, . . . , βn) =
0⇒ h(α) = 0). Then, α ∈ CMd

a
({A(β1, . . . , βn)}) = CRd

A
({A(β1, . . . , βn)}),

hence, according to Corollary 3, α ∈ CRd
A
(Y0). Since Y0 ⊆ X, we get α ∈

CRd
A
(Y0) ⊆ CRd

A
(X), hence α ∈ CRd

A
(X).

Then, we have proved that in both cases dCRA
(X) ⊆ CRd

A
(X) for every

X 6= ∅. �

According to Lemmas 8, 9 i 10 we obtain

Theorem 5.
CRd

A
= dCRA

.

It means that the logic CRd
A
is dual with respect to the logic CRA

. It does
not contain tautologies, neither. According to Theorem 4 we can conclude
that the logic CRd

A
is de facto a conjuctional logic expressed by means of

the operator A. To notice this fact it is enough to look closely at the rules
rd1 and rd2 from Rda.

References

[1] G. Asser Einfürung in die mathematische Logik, Teil I. Leipzig, 1959.
[2] G. Bryll Metody odrzucania wyrażeń, Akademicka Oficyna Wydawnicza PLJ,

Warszawa, 1996.
[3] G. Bryll, A. Chotomska, L. Jaworski, A formalization of logik without tautologies,

Prace Naukowe WSP w Częstochowie, Matematyka VIII (2000–2001), 9–12.
[4] A. Górnicka, Axiomatization of the sentential logic dual to Sobociński’s n — valued

logic, Bulletin of the Section of Logic, vol. 40:1/2 (2011), pp. 47–54.
[5] A. Górnicka, Badania nad pewnymi logikami dualnymi, Rozprawa doktorska

(maszynopis), Wrocław, 2001.
[6] A. Górnicka, Dual consequence operations associated with a certain class of logical

matrices, Bulletin of the Section of Logic, vol.29/4, (2000), 1–8.
[7] L. Jaworski, Z badań nad logikami bez tautologii, Rozprawa doktorska (maszynopis),

Opole, 2005–2007.
[8] J. Łoś, An algebraic proof of completeness for the two - valued propositional calculus,

Colloquium Mathematicum, no.2, (1951), 263-240.
[9] G. Malinowski, M. Spasowski, Dual counterparts of Łukasiewicz’s sentential calculi,

Studia Logica, vol.33, no.2 (1974), 153–162.
[10] W.A. Pogorzelski, The classical propositional calculus (in Polish), PWN Warszawa,

1978.
[11] R. Wójcicki, Dual counterparts of consequence operations, Bulletin of the Section

of Logic, vol.2, no.1 (1973), 201–214.



SOME DUAL LOGIC 47

Received: August 2015

Anetta Górnicka
Jan Długosz University in Częstochowa,
Institute of Mathematics and Computer Science,
42-200 Częstochowa, Al. Armii Krajowej 13/15, Poland
E-mail address: a.gornicka@ajd.czest.pl

Arkadiusz Bryll
Częstochowa University of Technology,
The Faculty of Menagement,
42-201 Częstochowa, ul. Dąbrowskiego 69, room. nr 2,Poland
E-mail address: tex@op.pl


