Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper demonstrates the importance of a proper contact algorithm selection when a constitutive model is correlated and validated, especially in the case of brittle materials. A parametric study is carried out to study the influence of contact parameters on the outcomes of the numerical simulations of a dynamic compression test. The split Hopkinson pressure bar (SHPB) model is developed, and sandstone rock is considered as a representative material having considerably different properties compared to SHPB bars. The finite element method (FEM) and smoothed particle hydrodynamics (SPH) were used to simulate specimen behaviour using a LS-Dyna solver. Two contact types based on the penalty method are analysed: nodes to surface (FEM and SPH) and surface to surface (FEM only). Furthermore, three approaches of contact stiffness calculation are used for each contact type. The waveform data and failure patterns are then compared among all simulated cases and the corresponding experimental outcomes. It is found that the soft constraint stiffness (SOFT = 1) provides the best outcomes, especially in the case of one-way contact, and is nearly insensitive to stiffness scaling parameters. By contrast, standard (SOFT = 0) and segment-based (SOFT =2) approaches require a substantial effort in adjusting the stiffness scaling parameters to obtain satisfactory results. This paper provides valuable guidance for correlating and validating parameters of constitutive models for rock and other brittle materials in the SHPB test.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
252--273
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
Bibliografia
- 1. Y. GH, Scott T, W. SP. Concrete Slab Damage and Hazard from Close-In Detonation of Weaponized Commercial Unmanned Aerial Vehicles. J Struct Eng [Internet]. 2021;147(11):4021190. Available from: https://doi.org/10.1061/(ASCE)ST.1943-541X.0003158
- 2. Morka A, Kędzierski P, Muzolf P. Optimization of the structure of a ceramic-aluminum alloy composite subjected to the impact of hard steel projectiles. Mech Compos Mater. 2016;52(3):333–46.
- 3. Kędzierski P, Morka A, Sławiński G, Niezgoda T. Optimization of two-component armour. Bull Polish Acad Sci Tech Sci. 2015;63(1): 173–9.
- 4. Wang J, Yin Y, Esmaieli K. Numerical simulations of rock blasting damage based on laboratory-scale experiments. J Geophys Eng. 2018;15(6):2399–417.
- 5. Liu K, Wu C, Li X, Li Q, Fang J, Liu J. A modified HJC model for improved dynamic response of brittle materials under blasting loads. Comput Geotech [Internet]. 2020;123(December 2019):103584. Available from: https://doi.org/10.1016/j.compgeo.2020.103584
- 6. Simons EC, Weerheijm J, Sluys LJ. A viscosity regularized plasticity model for ceramics. Eur J Mech A/Solids. 2018;
- 7. Johnson GR, Holmquist TJ. Response of boron carbide subjected to large strains, high strain rates, and high pressures. J Appl Phys. 1999;85(12):8060–73.
- 8. Holmquist TJ, Johnson GR, Cook WH. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. In: The 14th international symposium on ballistic. Quebec: Arlington, VA: American Defense Preparedness Associa-tion. 1993; 591–600.
- 9. Mardalizad A, Caruso M, Manes A, Giglio M. Investigation of me-chanical behaviour of a quasi-brittle material using Karagozian and Case concrete (KCC) model. J Rock Mech Geotech Eng. 2019.
- 10. Pająk M, Janiszewski J, Kruszka L. Laboratory investigation on the influence of high compressive strain rates on the hybrid fibre rein-forced self-compacting concrete. Constr Build Mater. 2019;227: 116687.
- 11. Sucharda O, Pajak M, Ponikiewski T, Konecny P. Identification of mechanical and fracture properties of self-compacting concrete beams with different types of steel fibres using inverse analysis. Constr Build Mater [Internet]. 2017;138:263–75. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2017.01.077
- 12. Máca P, Sovják R, Konvalinka P. Mix design of UHPFRC and its response to projectile impact. Int J Impact Eng. 2014;63:158–63.
- 13. Sovják R, Vavřiník T, Zatloukal J, Máca P, Mičunek T, Frydrýn M. Resistance of slim UHPFRC targets to projectile impact using in-service bullets. Int J Impact Eng. 2015;76:166–77.
- 14. Sielicki PW, Łodygowski T. Masonry wall behaviour under explosive loading. Eng Fail Anal. 2019;104:274–91.
- 15. Wu H, Qin, Zhang YD, Gong ZM, Wu H, Fang Q, et al. Semi-theoretical analyses of the concrete plate perforated by a rigid projec-tile. Acta Mech Sin. 2012;28(6):1630–43.
- 16. Wang Z liang L, Li Y chi C, Shen RF. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion. Int J Rock Mech Min Sci. 2007;44(5):730–8.
- 17. Mazurkiewicz Ł, Damaziak K, Małachowski J, Baranowski P. Para-metric study of numerically modelled delamination process in a com-posite structure subjected to dynamic loading. Eng Trans. 2013;61(1):15–31.
- 18. Mazurkiewicz Ł, Małachowski J, Baranowski P. Optimization of protective panel for critical supporting elements. Compos Struct. 2015;134:493–505.
- 19. Peng Y, Wu H, Fang Q, Liu JZ, Gong ZM. Flat nosed projectile penetrating into UHP-SFRC target: Experiment and analysis. Int J Impact Eng. 2016;93:88–98.
- 20. Liang X, Wu C. Meso-scale modelling of steel fibre reinforced con-crete with high strength. Constr Build Mater [Internet]. 2018;165:187–98. Available from: https://doi.org/10.1016/j.conbuildmat.2018.01.028
- 21. Wu H, Li YC, Fang Q, Peng Y. Scaling effect of rigid projectile pene-tration into concrete target: 3D mesoscopic analyses. Constr Build Mater. 2019;208:506–24.
- 22. Liu Z, Zhang C, Zhang C, Gao Y, Zhou H, Chang Z. Deformation and failure characteristics and fracture evolution of cryptocrystalline bas-alt. J Rock Mech Geotech Eng. 2019;11(5):990–1003.
- 23. Lv TH, Chen XW, Chen G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen. Constr Build Mater. 2018;160:744–64.
- 24. Wang J, Yin Y, Luo C. Johnson–Holmquist-II(JH-2) Constitutive Model for Rock Materials: Parameter Determination and Application in Tunnel Smooth Blasting. Appl Sci. 2018 Sep 16;8(9):1675.
- 25. Kang HM, Kang MS, Kim MS, Kwak HK, Park LJ, Cho SH. Experi-mental and numerical study of the dynamic failure behavior of rock materials subjected to various impact loads. In: WIT Transactions on the Built Environment. WITPress; 2014;357–67.
- 26. Li XB, Hong L, Yin TB, Zhou ZL, Ye ZY. Relationship between diam-eter of split Hopkinson pressure bar and minimum loading rate under rock failure. J Cent South Univ Technol.2008;15(2):218–23.
- 27. Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302.
- 28. Zhang J, Wang Z, Yang H, Wang Z, Shu X. 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly dis-tributed aggregates. Constr Build Mater. 2018;164:350–61.
- 29. Zhang X, Hao H, Ma G. Dynamic material model of annealed soda-lime glass. Int J Impact Eng. 2015;77:108–19.
- 30. Ruggiero A, Iannitti G, Bonora N, Ferraro M. Determination of John-son-holmquist constitutive model parameters for fused silica. EPJ Web Conf. 2012;26:04011.
- 31. Hao Y, Hao H, Zhang XH. Numerical analysis of concrete material properties at high strain rate under direct tension. Int J Impact Eng. 2012;39(1):51–62.
- 32. Xiao J, Li W, Corr DJ, Shah SP. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate con-crete. Cem Concr Res. 2013;52:82–99.
- 33. Kucewicz M, Baranowski P, Małachowski J. Determination and validation of Karagozian-Case Concrete constitutive model parame-ters for numerical modeling of dolomite rock. Int J Rock Mech Min Sci. 2020;129.
- 34. Kucewicz Michałand Baranowski PGR, Małachowski J. Investigation of dolomite’rock brittle fracture using fully calibrated Karagozian Case Concrete model. Int J Mech Sci. 2022;107197.
- 35. Huang Y, Yang Z, Ren W, Liu G, Zhang C. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Comput-ed Tomography images using damage plasticity model. Int J Solids Struct [Internet]. 2015;67–68:340–52. Available from: http://dx.doi.org/10.1016/j.ijsolstr.2015.05.002
- 36. Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302.
- 37. Zhang R, Li P yu, Zhi X dong, Wang Y hui, Fan F. Johnson–Holmquist-II model of annealed glass and its verification in dynamic compression test. Structures [Internet]. 2023;53(March):396–407. Available from: https://doi.org/10.1016/j.istruc.2023.04.082
- 38. Li M, Hao H, Cui J, Hao Y fei. Numerical investigation of the failure mechanism of cubic concrete specimens in SHPB tests. Def Technol [Internet]. 2022;18(1):1–11. Available from: https://doi.org/10.1016/j.dt.2021.05.003
- 39. Ren L, Yu X, Guo Z, Xiao L. Numerical investigation of the dynamic increase factor of ultra-high performance concrete based on SHPB technology. Constr Build Mater [Internet]. 2022;325:126756. Available from: https://doi.org/10.1016/j.conbuildmat.2022.126756
- 40. Lv Y, Wu H, Dong H, Zhao H, Li M, Huang F. Experimental and numerical simulation study of fiber-reinforced high strength concrete at high strain rates. J Build Eng [Internet]. 2023;65:105812. Available from: https://doi.org/10.1016/j.jobe.2022.105812
- 41. Deshpande VM, Chakraborty P, Chakraborty T, Tiwari V. Application of copper as a pulse shaper in SHPB tests on brittle materials- exper-imental study, constitutive parameters identification, and numerical simulations. Mech Mater [Internet]. 2022;171:104336. Available from: https://doi.org/10.1016/j.mechmat.2022.104336
- 42. Kucewicz M, Baranowski P, Mazurkiewicz Ł, Małachowski J. Com-parison of selected blasting constitutive models for reproducing the dynamic fragmentation of rock. Int J Impact Eng. 2023;173.
- 43. Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. In AIP Publishing; 2008;981–4.
- 44. Holmquist TJ, Johnson GR, Grady DE, Lopatin CM, Hertel ES. High strain rate properties and constitutive modeling of glass. In: Mayse-less M, Bodner S., editors. Proceedings of 15th International Sympo-sium on Ballistics. Jerusalem, Israel; 1995;234–44.
- 45. Holmquist TJ, Templeton DW, Bishnoi KD. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. Int J Impact Eng. 2001;25(3):211–31.
- 46. Ai HA, Ahrens TJ. Simulation of dynamic response of granite: A numerical approach of shock-induced damage beneath impact cra-ters. Int J Impact Eng. 2006;33(1–12):1–10.
- 47. Dehghan Banadaki MM, Mohanty B. Numerical simulation of stress wave induced fractures in rock. Int J Impact Eng. 2012;40–41:16–25.
- 48. Stanislawek S, Morka A, Niezgoda T. Pyramidal ceramic armor ability to defeat projectile threat by changing its trajectory. Bull Polish Acad Sci Tech Sci. 2015;63(4):843–9.
- 49. Ruggiero A, Iannitti G, Bonora N, Ferraro M. Determination of John-son-holmquist constitutive model parameters for fused silica. EPJ Web Conf 26. 2012;04011:1–4.
- 50. Zhang X, Hao H, Ma G. Dynamic material model of annealed soda-lime glass. Int J Impact Eng. 2015;77:108–19.
- 51. Baranowski P, Kucewicz M, Gieleta R, Stankiewicz M, Konarzewski M, Bogusz P, et al. Fracture and fragmentation of dolomite rock us-ing the JH-2 constitutive model: Parameter determination, experi-ments and simulations. Int J Impact Eng. 2020;140:103543.
- 52. Baranowski P, Kucewicz M, Janiszewski J. JH-2 constitutive model of sandstone for dynamic problems. Submitt to J (under Rev Int J Impact Eng. 2023.
- 53. Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302:124379.
- 54. Hallquist J. LS-DYNA Theory Manual [Internet]. Vol. 19. Livermore Software Technology Corporation (LSTC); 2019. 886 p. Available from:http://ftp.lstc.com/anonymous/outgoing/jday/manuals/DRAFT_ Theory.pdf
- 55. Kurzawa A, Pyka D, Jamroziak K, Bocian M, Kotowski P. Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al 2 O 3 particles. Compos. Struct.2018;201 :834 –44.
- 56. Pach J, Pyka D, Jamroziak K, Mayer P. The experimental and nu-merical analysis of the ballistic resistance of polymer composites. Compos Part B. 2017;113:24–30.
- 57. Mazurkiewicz Ł, Małachowski J, Tomaszewski M, Baranowski P, Yukhymets P. Performance of steel pipe reinforced with composite sleave. Compos Struct. 2018;183:199–211.
- 58. Zienkiewicz O, Taylor R, Zhu JZ. The Finite Element Method: its Basis and Fundamentals: Seventh Edition. The Finite Element Meth-od: its Basis and Fundamentals: Seventh Edition. 2013. 1–714 p.
- 59. Bathe K J. Finite Element Procedures [M] [Internet]. 2005; 1037 Available from: http://books.google.com/books?id=wKRRAAAAMAAJ&pgis=1%5Cnftp://ftp.demec.ufpr.br/disciplinas/EME748/Textos/Bathe, K.-J. - Finite Element Procedures - 1996 - Prentice-Hall - ISBN 0133014584 - 1052s.pdf
- 60. Logan D.L. A first course in the finite element method. 5th ed. Cen-gage Learning; 2010.
- 61. J. R. An Introduction to the Finite Element Method. 3rd ed. McGraw-Hill Education; 2005.
- 62. Kleiber M, Breitkopf P. Finite Element Methods in Structural Mechan-ics: With Pascal Programs. Ellis Horwood; 1993.
- 63. Gander MJ, Wanner G. From euler, ritz, and galerkin to modern computing. SIAM Rev. 2012;54(4):627–66.
- 64. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181(3):375–89.
- 65. Liu GR, Gu YT. An introduction to meshfree methods and their programming. An Introd to Meshfree Methods Their Program. 2005;1–479.
- 66. Liu MB, Liu GR. Smoothed particle hydrodynamics (SPH): An over-view and recent developments. Arch Comput Methods Eng. 2010;17(1):25–76.
- 67. Gasiorek D, Baranowski P, Malachowski J, Mazurkiewicz L, Wierc-igroch M. Modelling of guillotine cutting of multi-layered aluminum sheets. J Manuf Process [Internet]. 2018 Aug;34:374–88. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1526612518307059
- 68. Baranowski Pawełand Janiszewski J, Malachowski J. Study on computational methods applied to modelling of pulse shaper in split-Hopkinson bar. Arch Mech. 2014;66(6):429–52.
- 69. Wriggers P. Computational contact mechanics. Computational Con-tact Mechanics. 2006;1–518.
- 70. Vulović S, Živković M, Grujović N, Slavković R. A comparative study of contact problems solution based on the penalty and Lagrange mul-tiplier approaches. J Serbian Soc Comput Mech. 2007;1(1):174–83.
- 71. Yastrebov VA. Introduction to Computational Contact. In: Numerical Methods in Contact Mechanics. 2013; 1–14.
- 72. Kucewicz M, Baranowski P, Małachowski J, Ma J. Determination and validation of Karagozian-Case Concrete constitutive model parame-ters for numerical modeling of dolomite rock. Int J Rock Mech Min Sci. 2020;129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-269f4416-ef9f-4f66-9e21-e6d3075c76f6