PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multicriteria Oppositional-Learnt Dragonfly Resource-Optimized QoS Driven Channel Selection for CRNs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cognitive radio networks (CRNs) allow their users to achieve adequate QoS while communicating. The major concern related to CRN is linked to guaranteeing free channel selection to secondary users (SUs) in order to maintain the network’s throughput. Many techniques have been designed in the literature for channel selection in CRNs, but the throughput of the network has not been enhanced yet. Here, an efficient technique, known as multicriteria oppositional-learnt dragonfly resourceoptimized QoS-driven channel selection (MOLDRO-QoSDCS) is proposed to select the best available channel with the expected QoS metrics. The MOLDRO-QoSDCS technique is designed to improve energy efficiency and throughput, simultaneously reducing the sensing time. By relying on oppositional-learnt multiobjective dragonfly optimization, the optimal available channel is selected depending on signal-to-noise ratio, power consumption, and spectrum utilization. In the optimization process, the population of the available channels is initialized. Then, using multiple criteria, the fitness function is determined and the available channel with the best resource availability is selected. Using the selected optimal channel, data transmission is effectively performed to increase the network’s throughput and to minimize the sensing time. The simulated outputs obtained with the use of Matlab are compared with conventional algorithms in order to verify the performance of the solution. The MOLDRO-QoSDCS technique performs better than other methods in terms of throughput, sensing time, and energy efficiency.
Rocznik
Tom
Strony
41--46
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
  • ECE Department, KL University, KLEF, India
autor
  • ECE Department, KL University, KLEF, India
Bibliografia
  • [1] C. Chao, C. Chen, and H. Huang, “An adjustable channel hopping algorithm for multi-radio cognitive radio networks”, Computer Networks, vol. 170, pp. 1–7, 2020 (DOI: https://doi.org/10.1016/j.comnet.2020.107107).
  • [2] T. Chakraborty and I.S. Misra, “A novel three-phase target channel allocation scheme for multi-user cognitive radio networks”, Computer Communications, vol. 154, no. 4, pp. 19–39, 2020 (DOI: 10.1016/j.comcom.2020.02.026).
  • [3] J. Tlouyamma and M. Velempini, “Investigative analysis of channel selection algorithms in cooperative spectrum sensing in cognitive radio networks”, SAIEE Africa Research Journal, IEEE, vol. 112, no. 1, pp. 4–14, 2021 (DOI: 10.23919/SAIEE.2021.9340532).
  • [4] S. Jang, Ch. Han, K. Lee, and S. Yoo, “Reinforcement learningbased dynamic band and channel selection in cognitive radio adhoc networks”, EURASIP Journal on Wireless Communications and Networking, no. 131, pp. 1–25, 2019 (DOI: 10.1186/s13638-019- 1433-1).
  • [5] R.N. Raj, A. Nayak, and M.S. Kumar, “Spectrum-aware crosslayered routing protocol for cognitive radio ad hoc networks”, Computer Communications, vol. 164, pp. 249–260, 2020 (DOI: 10.1016/j.comcom.2020.10.011).
  • [6] R.N. Raj, A. Nayak, and M.S. Kumar, “QoS Aware Routing Protocol for Cognitive Radio Ad Hoc Networks”, Ad Hoc Networks, vol. 113, pp. 1–22, 2021 (DOI: 10.1016/j.adhoc.2020.102386).
  • [7] H.B. Salameh, R. Qawasmeh, and A.F. Al-Ajlouni, “Routing with intelligent spectrum assignment in full-duplex cognitive networks under varying channel conditions”, IEEE Communications Letters, vol. 24, no. 4, pp. 872–876, 2020 (DOI: 10.1109/LCOMM.2020.2968445).
  • [8] Y. Zhong, H. Wang, and H. Lv, “A cognitive wireless networks access selection algorithm based on MADM”, Ad Hoc Networks, vol. 109, pp. 1–9, 2020 (DOI: 10.1016/j.adhoc.2020.102286).
  • [9] K.N.S. Gudihatti, M.S. Roopa, R. Tanuja, S.H. Manjulaa, and K.R. Venugopal, “Energy aware resource allocation and complexity reduction approach for cognitive radio networks using game theory”, Physical Communication, vol. 42, pp. 1–41, 2020 (DOI: 10.1016/j.phycom.2020.101152).
  • [10] A. Kaur and K. Kumar, “Intelligent spectrum management based on reinforcement learning schemes in cooperative cognitive radio networks”, Physical Communication, vol. 43, pp. 1–12, 2020 (DOI: 10.1016/j.phycom.2020.101226).
  • [11] F. Aghaei and A. Avokh, “MRCSC: A cross-layer algorithm for joint multicast routing, channel selection, scheduling, and call admission control in multi-cell multi-channel multi-radio cognitive radio wireless networks”, Pervasive and Mobile Computing, vol. 64, pp. 1–20, 2020 (DOI: 10.1016/j.pmcj.2020.101150).
  • [12] A. Ali, et al., “Adaptive bitrate video transmission over cognitive radio networks using cross layer routing approach”, IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 3, pp. 935–945, 2020 (DOI: 10.1109/TCCN.2020.2990673).
  • [13] T. Chakraborty and J.S.S. Misra, “Design and implementation of a novel two-phase spectrum handoff scheme for QoS aware mobile users in cognitive radio networks”, Computer Networks, vol. 195, pp. 1–27, 2021 (DOI: 10.1016/j.comnet.2021.108194).
  • [14] R. Dasari and N. Venkatram, “Discrete quality factors aware channel scheduling in cognitive radio ad hoc networks”, Journal of Ambient Intelligence and Humanized Computing, pp. 1–14, 2021 (DOI: 10.1007/s12652-020-02607-6).
  • [15] A. Bagheri, A. Ebrahimzadeh, and M. Najimi, “Energy-efficient sensor selection for multi channel cooperative spectrum sensing based on game theory”, Journal of Ambient Intelligence and Humanized Computing, pp. 1–12, 2020 (DOI: 10.1007/s12652-020-02651-2).
  • [16] R. Yilmazel and N. Inanç, “A Novel approach for channel allocation In OFDM based cognitive radio technology”, Wireless Pers. Commun., vol. 120, pp. 307–321, 2021 (DOI: 10.1007/s11277-021-08456-6).
  • [17] M.W. Khan and M. Zeeshan, “QoS-based dynamic channel selection algorithm for cognitive radio based smart grid communication network”, Ad Hoc Networks, vol. 87, pp. 61–75, 2019 (DOI: 10.1016/j.adhoc.2018.11.007).
  • [18] O.P. Awe, D.A. Babatunde, S. Lambotharan, and B. AsSadhan, “Second order Kalman filtering channel estimation and machine learning methods for spectrum sensing in cognitive radio networks”, Wireless Networks, vol. 27, pp. 3273–3286, 2021 (DOI: 10.1007/s11276-021- 02627-w).
  • [19] R.V. Awathankar, M.S.S. Rukmini, and R.D. Raut, “To mitigate with trusted channel selection using MOORA algorithm in cognitive radio network”, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, pp. 1–10, 2020 (DOI: 10.1007/s40998-020- 00382-w).
  • [20] V. Rajpoot and V.S. Tripathi, “A novel proactive handoff scheme with CR receiver based target channel selection for cognitive radio network”, Physical Communication, vol. 36, pp. 1–11, 2019 (DOI: 10.1016/j.phycom.2019.100810).
  • [21] S.N. Sanka, T.R. Yarram, K.C. Yenumala, K.K. Anumandla, and J.R.K. Kumar Dabbakuti, “Dragonfly algorithm based spectrum assignment for cognitive radio networks”, Materials Today: Proceedings, pp. 1–4, 2021 (DOI: 10.1016/j.matpr.2020.11.301).
  • [22] S. Jothiraj, S. Balu, and N. Rangaraj, “An efficient adaptive thresholdbased dragonfly optimization model for cooperative spectrum sensing in cognitive radio networks”, International Journal of Communication Systems, vol. 34, no. 10, pp. 1–11, 2021 (DOI: 10.1002/dac.4829).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26940501-0470-4f33-b9c5-643f24af6759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.