PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nowe protokoły transportowe w sieciach IP: Analiza porównawcza wybranych mechanizmów w protokołach SCTP i QUIC

Autorzy
Identyfikatory
Warianty tytułu
EN
New transport protocols in IP networks: Comparative analysis of selected mechanisms in SCTP and QUIC protocols
Języki publikacji
PL
Abstrakty
PL
Zestaw protokolarny TCP/IP opisuje podstawową koncepcję organizacji pracy Internetu. Z tej racji jest przedmiotem zainteresowania oraz stałych analiz zarówno operatorów, użytkowników, jak też badaczy zagadnień sieciowych, a wreszcie i projektantów, by reagować na pojawiające się nowe potrzeby. Działania takie, przynajmniej częściowo, są wymuszane zarówno przez wymagania nowych multimedialnych aplikacji - na najwyższym poziomie architektury sieciowej, jak też zupełnie nowe możliwości realizacji przekazów - związane z nowymi technologiami transmisyjnymi i technikami odbioru, pozwalającymi, przykładowo na zrównoleglenie przekazów, czy też bezstratne przełączanie pomiędzy kilkoma interfejsami. W artykule pokrótce zasygnalizowano oczekiwania i wymagania związane, w szczególności z nowymi „wielobiektowymi” aplikacjami, jak też ograniczenia wynikające z ogromnej bezwładności, obserwowanej po stronie infrastruktury transportowej sieci IP. Mając na uwadze wspomniane uwarunkowania dokonano charakterystyki wybranych protokołów transportowych typu end-to-end, poświęcając główną uwagę dwóm protokołom realizującym przekazy wielostrumieniowe, a mianowicie SCTP oraz QUIC. Zaprezentowano zarówno wykorzystywane w obu protokołach struktury danych, jak też porównano podstawowe procedury związane z ich pracą. Dokonano też zestawienia cech charakterystycznych obu protokołów, wskazując na zakres ich użyteczności oraz scenariusze użycia.
EN
The TCP/IP protocol set is the basic concept of organizing the work of the Internet. For this reason, it is the subject of interest and constant analysis by operators, users, network researchers and designers in order to respond to emerging new needs. Such actions, at least partially, are forced both by the requirements of new multimedia applications - at the highest level of network architecture, as well as completely new possibilities of transmitting messages - related to new transmission technologies and reception techniques, allowing, for example, for parallelization of messages and lossless switching(Handover) between several interfaces. The article briefly indicates the expectations and requirements related, in particular, to new “multi-object” applications, as well as the limitations resulting from the huge inertia observed on the side of the IP network transport infrastructure. Taking into account the above-mentioned conditions, the selected end-to-end transport protocols were characterized, focusing mainly on two protocols implementing multi-stream transfers, namely SCTP and QUIC. The data structures used in both protocols are presented, as well as the basic procedures related to their work are compared. The characteristic features of both protocols are also compared, indicating the scope of their usefulness and use scenarios.
Rocznik
Tom
Strony
5--30
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Katedra Teleinformatyki, Wydział Elektroniki, Telekomunikacji i Informatyki, Politechnika Gdańska
Bibliografia
  • [1] https://en.wikipedia.org/wiki/DARPA
  • [2] Internet Protocol. DARPA Internet Program Protocol Specification. RFC: 791, September 1981 (ed. Jon Postel)
  • [3] J. Postel (ed): Transmission Control Protocol. DARPA Internet Program Protocol Specification. RFC: 793 (Replaces: RFC 761), September 1981
  • [4] M. Sportack: TCP/IP First-Step. Cisco Press. 1st ed. Dec 3, 2004
  • [5] J. Postel (ed.): User Datagram Protocol. RFC 768, August 1980
  • [6] https://en.wikipedia.org/wiki/Transport_layer
  • [7] G. Huston: A quick look at QUIC. The ISP Column - A monthly column on things Internet. March, 2019, https://www.potaroo. net/ispcol/2019-03/quic.pdf
  • [8] Arun Joseph, Tianxiang Li, Zihao He, Yong Cui, Lixia Zhang: A Comparison between SCTP and QUIC. QUIC working group. Internet-Draft Intended status: Informational, September 2018
  • [9] J. Iyengar, M. Thomson (eds.): QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000, May 2021
  • [10] M. Kühlewind, B. Trammell: Manageability of the QUIC Transport Protocol. RFC 9312, September 2022
  • [11] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson: Stream Control Transmission Protocol. RFC 2960, October 2000
  • [12] R. Stewart (Ed.): Stream Control Transmission Protocol. RFC 4960, September 2007
  • [13] R. Stewart, M. Tüxen, K. Nielsen: Stream Control Transmission Protocol. RFC 9260, June 2022
  • [14] A. Ford, C. Raiciu, M. Handley, O. Bonaventure: - TCP Extensions for Multipath Operation with Multiple Addresses. RFC 6824, January 2013
  • [15] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, C. Paasch: TCP Extensions for Multipath Operation with Multiple Addresses. RFC 8684, March.2020
  • [16] J. Iyengar, M. Thomson: QUIC: A UDP-Based Multiplexed and Secure Transport. draft-ietf-quic-transport-08. December 2017
  • [17] Ł. Budzisz: Stream Control Transmission Protocol (SCTP), a proposal for seamless handover management at the transport layer in heterogeneous wireless networks. Universitat Politecnica de Catalunya ` Department of Signal Theory and Communication Radio Communication Group. Ph.D. Dissertation, Barcelona, 2009
  • [18] Q. De Coninck, O. Bonaventure. 2021. Multipath Extensions for QUIC (MP-QUIC). Internet-Draft draft-deconinck-quic-multipath-07. Internet Engineering Task Force. https://datatracker.ietf.org/doc/ html/draft-deconinck-quic-multipath-07 Work in Progress
  • [19] Q. De Coninck: The packet number space debate in multipath QUIC. ACM SIGCOMM Computer Communication Review, Volume 52, Issue 3, July 2022, pp 2–9 https://doi.org/10.1145
  • [20] H. Krawczyk, M. Bellare, R. Canetti: HMAC: Keyed-Hashing for Message Authentication. - RFC2104, February 1997
  • [21] E. Barker, Q. Dang, S. Frankel, K. Scarfone, P. Wouters: Guide to IPsec VPNs. NIST Special Publication 800-77 Revision 1. June 2020
  • [22] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13- 18. https://tools.ietf.org/html/draft-ietf- -tls-tls13-18, October 2016
  • [23] A. Jungmaier, E. Rescorla and M. Tuexen, ”Transport Layer Security over Stream Control Transmission Protocol”, RFC 3436, December 2002
  • [24] A. Hohendorf, E. Rathgeb, M. Tüxen: Secure End-to-End Transport over SCTP. Computer Science, June 2006
  • [25] S. Lindskog, A. Brunström: An End-to-End Security Solution for SCTP. Third International Conference on Availability, Reliability and Security. March 2008
  • [26] S. Lindskog, A. Brunström: Secure Socket SCTP: A Multi-layer End-to-End Security Solution. Computer Science. 2008
  • [27] M. Tuexen, R. Seggelmann, E. Rescorla: Datagram Transport Layer Security (DTLS) for Stream Control Transmission Protocol (SCTP). RFC 6083, January 2011
  • [28] M. Westerlund, J. Preuss Mattsson, C. Porfiri: Datagram Transport Layer Security (DTLS) over Stream Control Transmission Protocol (SCTP). draft-ietf-tsvwg-dtls-over-sctp-bis-07. October 2023
  • [29] M. Tuexen, R. Stewart, P. Lei, P, E. Rescorla, "Authenticated Chunks for the Stream Control Transmission Protocol (SCTP)", RFC 4895, August 2007
  • [30] https://venturebeat.com/business/google-plans-to-propose-its-quic-network-protocol-which-delivers-http-over-udp-as-aninternet-standard
  • [31] E. Sy, C. Burkert, H. Federrath, M. Fischer A QUIC Look at Web Tracking. Proceedings on Privacy Enhancing Technologies ; 2019 (3):255–266
  • [32] A. Ghedini: Even faster connection establishment with QUIC 0-RTT resumption. 20.11.2019. https://blog.cloudflare.com/ even-faster-connection-establishment-with-quic-0-rtt-resumption
  • [33] M. Atiquzzaman, W. Ivancic: Evaluation of SCTP multistreaming over wireless/satellite links. Proceedings. 12th International Conference on Computer Communications and Networks. Dallas, TX. October 2020-22, 2003]).
  • [34] G. Huston: A look at QUIC use. Jul 2022, https://blog.apnic. net/2022/07/11/a-look-at-quic-use/
  • [35] W. Stevens: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms. RFC2001. January 1997
  • [36] M. Allman, V. Paxson, W. Stevens: TCP Congestion Control. RFC 2581, April 1999
  • [37] J. Iyengar, I. Swett (eds.): QUIC Loss Detection and Congestion Control. Internet Engineering Task Force (IETF). RFC: 9002, May 2021
  • [38] S. Floyd, T. Henderson: The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC2582, April 1999
  • [39] M. Allman, V. Paxson, E. Blanton, "TCP Congestion Control", RFC5681, September 2009
  • [40] T. Henderson, S. Floyd, A. Gurtov, A, Y. Nishida: The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 6582, April 2012
  • [41] M. Hoeft, J. Woźniak: Evaluation of Connectivity Gaps Impact on TCP Transmissions in Maritime Communications. Computer Networks. Springer International Publishing, 2017, p.91-105 (eds.: P. Gaj, A. Kwiecień, M.Sawicki)
  • [42] 5G: NG-RAN - NG signalling transport. (3GPP TS 38.412 version 15.0.0 Release 15). ETSI TS 138 412 V15.0.0. 2018-07
  • [43] System architecture for the 5G System (5GS). Technical Specification Group Services and System Aspects. 3rd Generation Partnership Project. Stage 23GPP TS 23.501 V18.3.0 (2023-09) (Release 18)
  • [44] M. Tuexen, R. Stewart: UDP Encapsulation of Stream Control Transmission Protocol (SCTP) Packets for End-Host to End-Host Communication. RFC 6951, May 2013
  • [45] J. Woźniak, K. Nowicki: The Need for New Transport Protocols on the Internet. AUTOMATYKA, ELEKTRYKA, ZAKŁÓCENIA. Vol. 14, nr 3 (53) 2023
  • [46] Usage statistics of QUIC for websites. https://w3techs.com/technologies/details/ce-quic (October 2023)
  • [47] https://w3techs.com/technologies/overview/site_element
  • [48] Specifications of the Signalling System No 7. ITU-T Recommendation Q.700. 03/1993
  • [49] V. Fajardo, J. Arkko, J. Loughney, G. Zorn: Diameter Base Protocol . RFC 6733, October 2012
  • [50] J. Woźniak (ed.): Tendencje w rozwoju polskiej i światowej telekomunikacji i teleinformatyki. Warszawa, Wyd. WAT 2020
  • [51] System architecture for the 5G System (5GS). Technical Specification Group Services and System Aspects. Stage 2 3GPP TS 23.501 V18.3.0 (2023-09) (Release 18)
  • [52] Procedures for the 5G System (5GS). 3GPP TS 23.502 version 16.7.0 Release 16), ETSI TS 123 502 V16.7.0 (2021-01).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26912eab-021f-40fd-89c1-91c995d4a5d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.