PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Statistical Features and Multilayer Neural Network to Automatic Diagnosis of Arrhythmia by ECG Signals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abnormal electrical activity of heart can produce a cardiac arrhythmia. The electrocardiogram (ECG) is a non-invasive technique which is used as a diagnostic tool for cardiac diseases. Non-stationarity and irregularity of heartbeat signal imposes many difficulties to clinicians (e.g., in the case of myocardial infarction arrhythmia). Fortunately, signal processing algorithms can expose hidden information within ECG signal contaminated by additive noise components. This paper explores a method of de-noising ECG signal by the discrete wavelet transform (DWT) and further detecting arrhythmia by estimated statistical parameters. Parameters of the de-noised ECG signals were used to form an input data vector determining whether the examined patient suffers from a cardiac arrhythmia or not. Input data were transformed using selected linear methods in order to reduce dimension of the input vector. A neural network was used to detect illness. Compared with the results of recent studies, the proposed method provides more accurate diagnosis based on the examined ECG signal data.
Rocznik
Strony
87--101
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr., wzory
Twórcy
autor
  • University of Tunis, ENSIT, LR13ES03 SIME, 1008, Montfleury, Tunisia
  • University Tunis ElManar, ISTMT, LR13ES07, LRBTM, Tunis, Tunisia
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • University of Tunis, ENSIT, LR13ES03 SIME, 1008, Montfleury, Tunisia
  • Laboratory of Epidemiology and Veterinary Microbiology, Pasteur Institute, Tunis, Tunisia
autor
  • University of Tunis, ENSIT, LR13ES03 SIME, 1008, Montfleury, Tunisia
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Mathers, C., Lopez, A., Stein, C., Fat, D., Rao, C. (2005). Deaths and disease burden by cause: global burden of disease estimates for 2001 by World Bank country groups.
  • [2] Rai, H.M., Trivedi, A. (2012). De-noising of ECG waveforms using multiresolution wavelet transform. International Journal of Computer Application, 45, 25-30.
  • [3] Martis, R.J., Acharya, U.R., Mina, L.C. (2013). ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform. Biomedical Signal Processing and Control, 8, 437-448.
  • [4] Goldberger, A.L. (2012). Clinical Electrocardiography: A Simplified Approach . Elsevier Health Sciences.
  • [5] Shiyovich, A., Wolak, A., Yacobovich, L., Grosbard, A., Katz, A. (2010). Accuracy of Diagnosing Atrial Flutter and Atrial Fibrillation from a Surface Electrocardiogram by Hospital Physicians: Analysis of Data from Internal Medicine Departments. The American Journal of the Medical Sciences, 340(4), 271-275.
  • [6] Bakul, G., Tiwary, U.S. (2010). Automated risk identification of myocardial infarction using relative frequency band coefficient (RFBC) features from ECG. Biomedical Engineering Journal, 4, 217-222.
  • [7] Mahmoodabadi, S., Ahmadian, A., Abolhasani, M. (2005). ECG feature extraction based on multiresolution wavelet transform. Conf. Proc. IEEE Eng. Med. Biol. Soc., 4, 3902-3905.
  • [8] Pal, S., Mitra, M. (2010). Detection of ECG characteristic points using multi resolution wavelet analysis based selective coefficient method. Measurement, 43, 255-261.
  • [9] Josko, A. (2007). Discrete Wavelet Transform in automatic ECG Signal Analysis. Conf. Proc. IEEE Instrumentation and Measurement Technology, 1-3.
  • [10] Banerjee, S., Gupta, R., Mitra, M. (2012). Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement, 45, 474-487.
  • [11] Lin, C.H. (2008). Frequency-Domain Features for Ecg Beat Discrimination Using Grey Relational Analysis-Based Classifier. Computers & Mathematics with Applications, 55(4), 680-690.
  • [12] Arif, M. (2008). Robust Electrocardiogram (Ecg) Beat Classification Using Discrete Wavelet Transform. Physiological Measurement, 29(5), 555.
  • [13] Zhao, Q.B., Zhang, L.Q. (2005). ECG Feature Extraction and Classification Using Wavelet Transform and Support Vector Machines. Proc. of the 2005 International Conference on Neural Networks and Brain, 1-3, 1089-1092.
  • [14] Li, C., Zheng, C., Tai, C. (1995). Detection of Ecg Characteristic Points Using Wavelet Transforms. IEEE Transactions on Biomedical Engineering, 42(1), 21-28.
  • [15] Zhao, Q.B., Zhang, L.Q. (2005). ECG Feature Extraction and Classification Using Wavelet Transform and Support Vector Machines. Proc. of the 2005 International Conference on Neural Networks and Brain, 1-3, 1089-1092.
  • [16] Tamil, E.M., Kamarudin, N.H., Salleh, R., Idris, Noorzaily, M,.Y.I., Noor, M., Tamil, A.M. (2008). Heartbeat Electrocardiogram (ECG) Signal Feature Extraction Using Discrete Wavelet Transforms (DWT).
  • [17] Martis, R.J., Acharya, U.R., Min, L.C. (2013). Ecg Beat Classification Using Pca, Lda, Ica and Discrete Wavelet Transform. Biomedical Signal Processing and Control, 8(5), 437-448.
  • [18] Martis, R.J., Acharya, U.R., Ray, A.K., Chakraborty, C. (2011). Application of Higher Order Cumulants to Ecg Signals for the Cardiac Health Diagnosis. Engineering in Medicine and Biology Society. EMBC, Annual International Conference of the IEEE, 1697-1700.
  • [19] Martis, R.J., Acharya, U.R., Mandana, K., Ray, A., Chakraborty, C. (2013b). Cardiac Decision Making Using Higher Order Spectra. Biomedical Signal Processing and Control, 8(2), 193-203.
  • [20] Kutlu, Y., Kuntalp, D. (2011). A Multi-Stage Automatic Arrhythmia Recognition and Classification System. Computers in Biology and Medicine, 41(1), 37-45.
  • [21] De Chazal, P., Reilly, R.B. (2006). A Patient-Adapting Heartbeat Classifier Using Ecg Morphology and Heartbeat Interval Features. IEEE Transactions on Biomedical Engineering, 53(12), 2535-2543.
  • [22] Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C.,Y. Ng, A. (2017). arXiv preprint arXiv:1707.01836v1. 53(12).
  • [23] Ioffe, S., Christian, S. (2017) Batch normalization. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. arXiv preprint arXiv:1502.03167.
  • [24] Kim, J., Min, S.D./ Lee, M. (2011). An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects. Biomedical engineering online, 10(1), 56, PMid:21707989. http://dx.doi.org/10.1186/ 1475-925X-10-56.
  • [25] Zhang, Z., Dong, J., Luo, X., Choi, K., Wu, X. (2014). Heartbeat classification using disease-specific feature selection. Computers in Biology and Medicine, 46, 79-89, PMid: 24529208. http://dx.doi.org/10.1016/j.compbiomed.2013.11.019.
  • [26] Martis, R.J., Acharya, U.R., Adeli, H. (2014). Current Methods in NElectrocardiogram Characterization. Computers in Biology and Medicine, 48, 133-149.
  • [27] Moody, G.B., Mark, R.G. (2001). The Impact of the Mit-Bih Arrhythmia Database. Engineering in Medicine and Biology Magazine, IEEE, 20(3), 45-50.
  • [28] Mouelhi, A., Sayadi, M., Fnaiech, F., Mrad, K. (2013). A new automatic image analysis method for assessing estrogen receptors’status inbreast tissue specimens. Computers in Biology and Medicine, 2263-2277.
  • [29] Mouelhi, A., Sayadi, M., Fnaiech, F., Mrad, K., Ben Romdhane, K. (2013). Automatic Image Segmentation of Nuclear Stained Breast Tissue Sections Using Color Active Contour Model and an Improved Watershed Method. Biomedical Signal Processing and Control, 421-436.
  • [30] Martinez, A.M., Kak, A.C. (2001). PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228-233.
  • [31] Martis, R.J., Acharya, U.R., Lim, C.M., Mandana, K., Ray, A.K., Chakraborty, C. (2013). Application of Higher Order Cumulant Features for Cardiac Health Diagnosis Using ECG Signals. International journal of neural systems, 23(04).
  • [32] Inan, O.T., Giovangrandi, L., Kovacs, G.T. (2006). Robust Neural-Network- Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features. IEEE Transactions on Biomedical Engineering., 53(12), 2507-2515.
  • [33] Zhao, Q.B., Zhang, L.Q. (2005). ECG Feature Extraction and Classification Using Wavelet Transform and Support Vector Machines. Proc. of the 2005 International Conference on Neural Networks and Brain, 1-3, 1089-1092.
  • [34] Smulko, J. (2006). Methods of electrochemical noise analysis for investigation of corrosion processes. Fluctuation and Noise Letters, 6(02), R1-R9.
  • [35] Kiwilszo, M., Smulko, J. (2009). Pitting corrosion characterization by electrochemical noise measurements on asymmetric electrodes. Journal of Solid State Electrochemistry, 13(11), 1681-1686.
  • [36] Lentka, Ł., Kotarski, M., Smulko, J., Cindemir, U., Topalian, Z., Granqvist, C.G., Ionescu, R. (2016). Fluctuation-enhanced sensing with organically functionalized gold nanoparticle gas sensors targeting biomedical applications. Talanta, 160, 9-14.
  • [37] Übeyli, E.D. (2009). Combining Recurrent Neural Networks with Eigenvector Methods for Classification of ECG beats. Digital Signal Processing, 19(2), 320-329.
  • [38] Kim, J., Shin, H.S., Shin, K., Lee, M. (2009). Robust Algorithm for Arrhythmia Classification in Ecg Using Extreme Learning Machine. Biomed. Eng. Online, 8, 31.
  • [39] Derya Übeyli, E. (2010). Recurrent Neural Networks Employing Lyapunov Exponents for Analysis of Ecg Signals. Expert systems with applications, 37(2), 1192-1199.
  • [40] Lentka, Ł., Smulko, J.M., Ionescu, R., Granqvist, C.G., Kish, L.B. (2015). Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst., 22(3), 341-350.
  • [41] Ince, T., Kiranyaz, S., Gabbouj, M. (2009). A Generic and Robust System for Automated Patient-Specific Classification of Ecg Signals. IEEE Transactions on Biomedical Engineering., 56(5), 1415-1426.
  • [42] Ben Slama, A., Mouelhi, A., Sahli, H., Manoubi, S., Mbarek, C., Trabelsi, H. Fnaiech, F., Sayadi, M. (2017). A New Preprocessing Parameter Estimation based on Geodesic Active Contour Model for Automatic Vestibular Neuritis Diagnosis. Artificial Intelligence in Medicine, 80, 48-62.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2690c17b-35c2-4272-8176-7b44892283b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.