Identyfikatory
Warianty tytułu
Characteristics of Biofilm Bacteria from Tapping Points of the Drinking Water Distribution System
Języki publikacji
Abstrakty
Microorganisms in the drinking water distribution system form a biofilm on the inner surfaces of the pipes. It is a life preserving strategy that provides easier access to nutrients and protects against harmful environmental factors. The biofilm is a habitat for numerous species of autochthonous microflora which contribute to the intensification of bio-corrosion and negatively affect the quality of the water supplied to the consumers. Additionally, the biofilm can consist of pathogenic species, which may pose an epidemiological hazard. Every drinking water distribution system has its own microflora, it is associated with the presence of autochthonous microorganisms that come from the raw water which despite treatment processes leaked to the network, and microbes that entered as a result of maintenance, failures and leakages. These factors contribute to the biofilm uniqueness in each water supply system, it is associated with the lack of reproducibility of the structure. In the present study characterized the microorganisms from biofilm of 17 tapping points of the water supply system for their ability to adhesion, resistance against selected antibiotics and rated their enzymatic activity. It is believed that the microorganisms with high surface affinity can play a decisive role in the early stages of biofilm formation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
86--99
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
autor
- Instytut Ekologii Terenów Uprzemysłowionych
autor
- Politechnika Wrocławska
autor
- Instytut Ekologii Terenów Uprzemysłowionych
Bibliografia
- 1. Abe, Y., Skali-Lami, S., Block, J., Francius, G. (2012). Cohesiveness and hydrodynamic properties of young drinking water biofilms. Water Research,46, 1155-1166.
- 2. Andersson, S., Dalhammar, G., Land, C., Rajaro, G. (2009). Characterization of extracellular polymeric substances from denitrifying organism Comamonasdenitrificans. Applied Microbiology and Biotechnology, 82, 535-543.
- 3. Armstrong, J., Shigeno, D., Calomiris, J., Seidler R. (1981). Antibiotic-resistant bacteria in drinking water. Appl. Environ. Microbiol., 42, 277-283.
- 4. Beech, I., Zinkevich, V., Tapper, R., Gubner, R. (1998). Direct involvement of an extracellular complex produced by a marine sulfate- reducing bacterium in deterioration of steel. Geomicrobiology Journal, 15, 121-134.
- 5. Boe-Hansen, R., Albrechtsen, H., Arvin, E., Jorgensen, C. (2002). Dynamics of biofilm formation in model drinking water distribution system. Journal of Water Supply: Research and Technology-AQUA, 51, 399-406.
- 6. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 28-254.
- 7. Dubois, M., Gilles, K., Hamilton, J., Rebers, P., Smith, F. (1956). Colometric method for determination sugars and related substances. Analytical Chemistry, 28, 350-356.
- 8. Fiebelkorn, K., Crawford, S., McElmeel, M., Jorgensen J. (2003). Practical Disk Diffusion Method for Detection of Inducible Clindamycin Resistance in Staphylococcus aureus and Coagulase-Negative Staphylococci. Journal of Clinical Microbiology, 44, 4740-4744.
- 9. Lehtola, M., Miettinen, K., Keinanen, M., Kekki, T., Laine, O., Hirvonen, A. (2004). Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Research, 38, 3769-3779.
- 10. Maira-Litrán, T., Allison, D., Gilbert P. (2000). Expression of the multiple antibiotic resistance operon (mar) during growth of Escherichia coli as a biofilm. Journal of Applied Microbiology, 88, 243-247.
- 11. Martiny, A., Albrechtsten, H., Arvin, E., Molin, S. (2005). Identification of Bacteria in Biofilm and Bulk Water Samples from a Nonchlorinated Model Drinking Water Distribution System: Detection of a Large Nitrite- Oxidizing Population Associated with Nitrospira spp. Applied and Environmental Microbiology, 71, 8611-8617.
- 12. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S., Lee, Y. (2005). Carbohydrate analysis by a phenolsulfuric acid method in microplate format. Analytical Biochemistry, 339, 69-72
- 13. Moss, J., Nocker, A., Lepo, J., Snyder R. (2006). Stability and Change in Estuarine Biofilm Bacterial Community Diversity. Applied and Environmental Microbiology, 72, 5679-5688.
- 14. Nevel, S., Roy, K., Boon, N. (2013). Bacterial invasion potential in water is determined by nutrient availability and the indigenous community. FEMS Microbiology Ecology, 85, 593-603.
- 15. Paris, T., Skali-Lami, S., Block J. (2009). Probing young drinking water biofilms with hard and soft particles. Water Research, 43, 117-126.
- 16. Pathak, S., Gopal, K. (2008). Prevalence of bacterial contamination with antibiotic-resistant and enterotoxigenic fecal coliforms in treated drinking water. J. Toxicol. Environ. Health A, 71, 427-433.
- 17. Simoes, L., Simoes, M., Olviera, R., Vieira, M. (2007). Potential of the adhesion of bacteria isolated from drinking water to materials. Journal of Basic Microbiology, 47, 174-183.
- 18. Traczewska, T., Sitarska, M., Biedroń, I. (2014). Ekologiczne i techniczne aspekty powstawania biofilmu w wodzie. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
- 19. Xi, C., Zhang, Y., Marrs, C., Ye, W., Simon, C., Foxman, B., Nriagu, J. (2009). Prevalence of Antibiotic Resistance in Drinking Watre Treatment and Distribution System. Applied and Environmental Microbiology, 75, 5714-5718.
- 20. Zhang, D., Xia, J., Xu, Y., Gong, M., Zhou, Y., Xie, L., Fang, X. (2014). Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia. Clinical and Experimental Medicine, 16, 73-80.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26893720-2c5b-4130-9778-59b428ceffb6