PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Dispersion Methods on the Mechanical, Thermal and Rheological Properties of HTPB-based Nanocomposites: Possible Binders for Composite Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study reports on the methods of preparation for HTPB-clay nanocomposites and their mechanical, thermal and rheological properties for their functional utility as an improved binder system for composite propellants. HTPB-clay nanocomposites were prepared by dispersing organoclay Cloisite 30B (1-3 wt.%) in the polymer matrix by magnetic stirring and high shear mixing. Critical parameters like time, temperature and RPM were optimized. These nanocomposites were cured with toluene diisocyanate in the presence of the cure catalyst DBTDL. The dispersion of the nanoclay was evaluated by using small angle X-ray scattering (SAXS) and energy dispersive X-ray (EDX) spectroscopy. EDX suggested homogeneous distribution while SAXS revealed partial exfoliation of the clay particles in the polymer matrix. Superior dispersion of the nanoclay was obtained by high shear mixing. The tensile properties of the nanocomposites prepared by high shear mixing showed 10-20% more strength and elastic modulus. The nanocomposites showed thermal stability higher than the pristine HTPB. Swelling behavior revealed increased cross linking, and the rheological behavior exhibited higher viscosity of the nanocomposites. In addition, the clay amount was increased up to 10 wt.% and its effect on the mechanical, thermal and swelling behavior was observed. Theoretical performance predictions of composite propellants with nanocomposites revealed their possible functional utility.
Rocznik
Strony
281--298
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
autor
  • High Energy Materials Research Laboratory Sutarwadi, Pune 411 012, India
  • High Energy Materials Research Laboratory Sutarwadi, Pune 411 012, India
  • High Energy Materials Research Laboratory Sutarwadi, Pune 411 012, India
autor
  • High Energy Materials Research Laboratory Sutarwadi, Pune 411 012, India
Bibliografia
  • [1] Scariah, K. J.; Rama Rao, M.; Ravindran, P.V.; Chandrasekaran, G.; Alwan, S.; Sastri, K.S. Correlation of Mechanical Properties with Functionality and Molecular Weight Distribution for HTPB Polymers. Colloquium on HTPB at Vikram Sarabhai Space Centre, Proc., Thiruvananthapuram, India, July 24-25, 1992; III-7: 161-68.
  • [2] Inagaki, H.; Donkai, N.; Saitoh, A.; Zenitani, Y. Molecular Characterization of Hydroxyl Terminated Polybutadienes. J. Appl. Polym. Sci. 1984, 29: 3741-3752.
  • [3] Anderson, J.N.; Baczek, S.K. Functionality Distribution of Hydroxyl Terminated Polybutadienes Using Gel Permeation Chromatography. I. The Method and Calibration Procedure. J. Appl. Polym. Sci. 1975, 19: 2255-2267.
  • [4] Anderson, J.N.; Baczek, S.K. Functionality Distribution of Hydroxyl Terminated Polybutadienes Using Gel Permeation Chromatography. II. Measurement for Commercial Polymers. J. Appl. Polym. Sci. 1975, 19: 2269-2277.
  • [5] Mahanta, A.K.; Pathak, D.D. HTPB-Polyurethane: A Versatile Fuel Binder for Composite Solid Propellant. In: Polyurethane (Zafar, F.; Sharmin, E., Eds.), InTech, 2012, Vol. 1, Chapter 11, pp. 229-262; ISBN 978-953-51-0726-2.
  • [6] Pavlidou, S.; Papaspyrides, C.D. A Review on Polymer-layered Silicate Nanocomposites. Prog. Polym. Sci. 2008, 33: 1119-1198.
  • [7] Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui. D. Epoxy Clay Nanocomposites ‒ Processing, Properties and Applications: A Review. Composites: Part B 2012, 45(1): 308-320.
  • [8] Zhang, J.; Manias, E.; Wilkie, C.A. Polymerically Modified Layered Silicates: An Effective Route to Nanocomposites. J. Nanosci. Nanotechnol. 2008, 8: 1597-1615.
  • [9] Olad, A. Polymer/Clay Nanocomposites. In: Advances in Diverse Industrial Applications of Nanocomposites (Reddy, B., Ed.), InTech, 2011, Vol. 1, Chapter 7, pp. 113-138; ISBN 978-953-307-202-9.
  • [10] Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Polymer-matrix Nanocomposites, Processing, Manufacturing and Application: An Overview. J. Compos. Mater. 2006, 40(17): 1511-1575.
  • [11] Okamoto, M.; Ray, S.S.; Polymer/Clay Nanocomposites. In: Encyclopedia of Nanoscience and Nanotechnology Vol. 8 (Nalwa, H.S., Ed.) 2004, pp. 1-52; ISBN 1-58883-064-0.
  • [12] Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T.C. Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties. Chem. Mater. 2001, 13: 3516-3523.
  • [13] Nigam, V.; Lal, G. Review on Recent Trends in Polymer Layered Clay Nanocomposites. Indian Natn. Sci. Acad., Proc., 2008, 74(2): 87-96.
  • [14] Khudyakov, I.V.; Zopf, R.D.; Turro, N.J. Polyurethane Nanocomposites. Des. Monomers. Polym. 2009, 12: 279-290.
  • [15] Kornmann, X. Synthesis and Characterization of Thermoset-clay Nanocomposites. Ph. D. Thesis. Division of Polymer Engineering, Lulea University of Technology, Sweden, 2001.
  • [16] Cho, J.W.; Paul, D.R. Nylon 6 Nanocomposites by Melt Compounding. Polymer 2001, 42: 1083-1094.
  • [17] Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T. Synthesis of Nylon 6-Clay Hybrid. J. Mater. Res. 1993, 8: 1179-1184.
  • [18] Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T. Interaction of Nylon 6-Clay Surface and Mechanical Properties of Nylon 6-Clay Hybrid. J. Appl. Polym. Sci. 1995, 55: 119-123.
  • [19] Okada, A.; Fukushima, Y.; Kawasumi, M.; Inagaki, S.; Usuki, A.; Sugiyama, S.; Kurauchi, T.; Kamigaito, O. Composite Material and Process for Manufacturing Same. Patent US 4,739,007, 1988.
  • [20] Vaia, R.A.; Ishii, H.; Giannelis, E.P. Synthesis and Properties of Two-dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates. Chem. Mater. 1993, 5: 1694-1696.
  • [21] Mehrotra, V.; Giannelis, E.P. Conducting Molecular Multilayers: Intercalation of Conjugated in Layered Media. Mater. Res. Soc. Symp., Proc., 1990, 171: 39-44.
  • [22] Pinnavavia, T.J.; Beale, G.W. Polymer Clay Nanocomposites. Wiley, New York, 2000; ISBN 9780471637004.
  • [23] Chen, T.K.; Tien, Y.I.; Wei, K.H. Synthesis and Characterization of Novel Segmented Polyurethane/Clay Nanocomposites via Poly(Ε-Caprolactone)/Clay. J. Polym. Sci, Part: A, Polym. Chem. 1999, 37: 2225-2233.
  • [24] Yao, K.J.; Song, M.; Hourston, D.J.; Huo, D.Z. Polymer/Layered Clay Nanocomposites: 2 Polyurethane Nanocomposites. Polymer 2002, 43: 1017-1020.
  • [25] Alexandre, M.; Dubois, P. Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng., R. 2000, 28: 1-63.
  • [26] Ray, S.S.; Okamoto, M. Polymer-Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28: 1539-1641.
  • [27] Wagener, R.; Reisinger, T.J.G. A Rheological Method to Compare the Degree of Exfoliation of Nanocomposites. Polymer 2003, 44: 7513-7518.
  • [28] Ito, Y.; Omote, K.; Harada, J. A New Small Angle X-ray Scattering Technique for Determining Nano-scale Pore/Particle Size Distributions in Thin Film. Adv. X-ray Anal. 2003, 46: 56-60.
  • [29] Mouloud, A.; Cherif, R. Effect of Nanoclay Particles on Kinetic and Calorimetric Properties of Epoxy Composite Rocket Propellants. Int. Conf. ICT: Energetic Materials: Synthesis, Characterization, Proc., 43rd, Karlsruhe, 26-29 June 2012.
  • [30] Mouloud, A. Study of Reaction Kinetic Data of Composite Rocket Propellants Based on Epoxy Binder – Effect of Nanoclays. Int. Conf. ICT: Energetic Materials: Particle, Processing, Applications, Proc., 45th, Karlsruhe, 24-27 June 2014.
  • [31] Mouloud, A.; Cherif, R.; Fellahi, S. Ballistic and Thermomechanical Investigation of Epoxy Composite Rocket Propellants. Effect of Nanoclay Particles. Int. Conf. ICT: Energetic Materials for High Performance, Insensitive Munitions and Zero Pollution, Proc., 41st, Karlsruhe, June 29 - July 02 2010.
  • [32] Gajiwala, H.M. Rocket Motors Incorporating Basalt Fiber and Nanoclay Compositions and Methods of Insulating a Rocket Motor with the Same. Patent US 7,968,620, 2011.
  • [33] Chen, T.-K.; Tien, Y.-I.; Wei, K.-H. Synthesis and Characterization of Novel Segmented PU/Clay Nanocomposites. Polymer 2000, 41: 1345-1353.
  • [34] Ryu, J.G.; Lee, J.W. Development of Poly (Methyl Methacrylate)-Clay Nanocomposites by Using Power Ultrasonic Wave. Macromol. Res. 2002, 10(4): 187-193.
  • [35] Ngo, T.-D.; Ton-That, M.-T.; Hoa, S.V.; Cole. K.C. Preparation and Properties of Epoxy Nanocomposites. Part 2: The Effect of Dispersion and Intercalation/Exfoliation of Organoclay on Mechanical Properties. Polym. Eng. Sci. 2012, 52(3): 607-614.
  • [36] Lee, E.C.; Mielewski, D.F. Method for Producing a Well-exfoliated and Dispersed Polymer Silicate Nanocomposite by Ultrasonication. Patent US 6,828,371B2, 2004.
  • [37] Choi, M.C.; Jung, J.Y.; Yeom, H.S.; Chang, Y.W. Mechanical, Thermal, Barrier, and Rheological Properties of Poly(ether-block-amide) Elastomer/Organoclay Nanocomposite Prepared by Melt Blending. Polym. Eng. Sci. 2013: 982-991.
  • [38] Pinnavaia, T.J.; Lan, T. Methods of Preparation of Organic-Inorganic Hybrid Nanocomposites. Patent US 6,096,803, 2000.
  • [39] Ruth, P.N.; Blanski, R.L.; Yandek, G.; Mabry J.M. Dispersion of Nanoclays in Urethane Monomers. Polym. Prepr. 2009, 50(2): 528.
  • [40] Dey, A.; Khan, M.A.S.; Athar, J.; Sikder, A.K.; Chattopadhyay, S. Effect of Microstructure on HTPB Based Polyurethane (HTPB-PU). J. Mater. Sci. Eng. B. 2015, 5 (3-4):145-151.
  • [41] Barikani, M.; Hepburn, C. Determination of Crosslink Density by Swelling in the Castable Polyurethane Elastomer Based on 1/4-Cyclohexane Diisocyanate and Para-Phenylene Diisocyanate. Iran. J. Polym. Sci. Technol. 1992, 1: 1-5.
  • [42] Varlot, K.; Reynaud, E.; Kloppfer, M.H.; Vigier, G.; Varlet, J. Clayreinforced Polyamide: Preferential Orientation of the Montmorillonite Sheets and the Polyamide Crystalline Lamellae. J. Polym. Sci. Part B: Polym. Phys. 2001, 39: 1360-1370.
  • [43] Chin, I.-J.; Thurn-Albrecht, T.; Kim, H.-C.; Russell, T.P.; Wang, J. On Exfoliation of Montmorillonite in Epoxy. Polymer 2001, 42: 5947-5952.
  • [44] Messersmith, P.B.; Giannelis, E.P. Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites. Chem. Mater. 1994, 6: 1719-1725.
  • [45] Tien, Y.L.; Wei, K.H. The Effect of Nano-sized Silicate Layers from Montmorillonite on Glass Transition, Dynamic Mechanical, and Thermal Degradation Properties of Segmented Polyurethane. J. Appl. Polym. Sci. 2002, 86: 1741-1748.
  • [46] Ray, S.S.; Bousmina, M. Biodegradable Polymers and Their Layered Silicate Nanocomposites: In Greening the 21st Century Materials World. Prog. Mater. Sci. 2005, 50(8): 962-1079.
  • [46] Becker, O.; Varley, R.J.; Simon, G.P. Thermal Stability and Water Uptake of High Performance Epoxy Layered Silicate Nanocomposites. Eur. Polym. J. 2004, 40: 187-195.
  • [48] Zhu, J.; Uhl, F.M.; Morgan, A.B.; Wilkie, C.A. Studies on the Mechanism by Which the Formation of Nanocomposites Enhances Thermal Stability. Chem. Mater. 2001, 13: 4649-4654.
  • [49] McNally, T.; Murphy, W.R.; Lew, C.Y.; Turner, R.J.; Brennan, G.P. Polyamide-12 Layered Silicate Nanocomposites by Melt Compounding. Polymer 2003, 44: 2761-2772.
  • [50] Solomon, M.J.; Almusallam, A.S.; Seefeldt, K.F.; Somwangthanaroj, A.; Varadan, P. Rheology of Polypropylene/Clay Hybrid Materials. Macromolecules 2001, 34: 1864-1872.
  • [51] Vaia, R.A.; Wagner, H.D. Framework for Nanocomposites. Mater. Today 2004, 7: 32-37.
  • [52] Bharadwaj, R.K.; Mehrabi, A.R.; Hamilton, C.; Trujillo, C.; Murga, M.F.; Chavira, A. Structure-property Relationships in Cross-linked Polyester-Clay Nanocomposites. Polymer 2002, 43: 3699-3705.
  • [53] Thellen, C.; Orroth, C.; Froio, D.; Ziegler, D.; Lucciarini, J.; Farrell, R. Influence of Montmorillonite Layered Silicate on Plasticized Poly(L-Lactide) Blown Films. Polymer 2005, 46: 11716-11727.
  • [54] Chen, B.; Evans, J.R.G. Poly(ε-Caprolactone)-Clay Nanocomposites: Structure and Mechanical Properties. Macromolecules 2006, 39: 747-754.
  • [55] Li, P.; Wang, L.; Song, G.; Yin, L.; Qi, F.; Sun, L. Characterization of High-Performance Exfoliated Natural Rubber/Organoclay Nanocomposites. J. Appl. Polym. Sci. 2008, 109: 3831-3838.
  • [56] Yu, Y.; Gu, Z.; Song, G.; Li, P.; Li, H.; Liu, W. Structure and Properties of Organo-Montmorillonite/Nitrile Butadiene Rubber Nanocomposites Prepared from Latex Dispersions. Appl. Clay Sci. 2011, 52: 381-385
  • [57] Krishnamoorti, R.; Giannelis, E.P. Rheology of End Tethered Polymer Layered Silicate Nanocomposites. Macromol. 1997, 30: 4097-5102.
  • [58] Ray, S.S.; Yamada, K.; Okamoto, M.; Ueda, K. New Polylactide/Layered Silicate Nanocomposites. 2. Concurrent Improvements of Material Properties, Biodegradability and Melt Rheology. Polymer 2003, 44: 857-866.
  • [59] Lim, S.T.; Choi, H.J.; Jhon, M.S. Dispersion Quality and Rheological Property of Polymer/Clay Nanocomposites: Ultrasonication Effect. J. Ind. Eng. Chem. 2003, 9(1): 51-57.
  • [60] Knauert, S.T.; Douglas, J.F.; Starr, F.W. The Effect of Nanoparticle Shape on Polymer-Nanoocmposite Rheology and Tensile Strength. J. Polym. Sci. Part B: Polym. Phy. 2007, 45: 1882-1897.
  • [61] Scatteia, L.; Scarfato, P.; Acierno, D. Effects of Processing Conditions on Exfoliation and Rheological Behavior of PBT-Clay Nanocomposites. Annual Transactions of the Nordic Rheology Society 2005, 13: 157-161.
  • [62] Chow, W.S.; Mohdishak, Z.A. Mechanical, Morphological and Rheological Properties of Polyamide 6/Organo-Montmorillonite Nanocomposites. eXPRESS Polym. Lett. 2007, 2: 77-83.
  • [63] Kim, B.C.; Lee, S.J. Silicate Dispersion and Rheological Properties of High Impact Polystyrene/Organoclay Nanocomposites via In Situ Polymerization. Korea-Aus. Rheol. J. 2008, 20(4): 227-233.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26877831-a4be-4eec-ba78-dd35f97a32d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.