PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy system for decision support of post-mining regions reclamation (FSDR)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
System rozmyty do wspomagania decyzji w zakresie rekultywacji terenów pogórniczych
Języki publikacji
EN
Abstrakty
EN
Open pit mining of rock minerals and the affected areas requiring further development are a serious challenge for shaping the positive image of the mining industry among the public. The direction and method of post-mining land reclamation are important for this image, which should take into account various factors describing the mining area, including social preferences. The article presents an example solution – fuzzy system (FSDR) – which supports the selection of the direction of reclamation of post-mining areas created after the termination of operations of open pit gravel and sand natural aggregate mines. The article presents selected factors determining the selection of the direction and possible reclamation variants as input and output data of the fuzzy system. The rules base of the developed system, as well as the mechanisms of inference and defuzzification, were also characterized. The application of the developed system is presented on selected examples.
PL
Eksploatacja surowców skalnych metodą odkrywkową oraz pozostające po niej tereny wymagające dalszego zagospodarowania stanowią poważne wyzwanie dla kształtowania pozytywnego wizerunku branży górniczej w odbiorze społecznym. Dla tego wizerunku istotnym jest przede wszystkim kierunek i sposób rekultywacji terenu poeksploatacyjnego, który powinien brać pod uwagę różne czynniki charakteryzujące teren pogórniczy, w tym preferencje społeczne. W artykule zaprezentowano przykład opracowanego rozwiązania – systemu rozmytego (FSDR) – który wspomaga wybór kierunku rekultywacji terenów pogórniczych powstałych po zakończeniu działalności kopalń odkrywkowych kruszyw naturalnych żwirowo – piaszczystych. W artykule przedstawiono wybrane czynniki determinujące wybór kierunku i możliwe warianty rekultywacji jako dane wejściowe i wyjściowe systemu rozmytego. Scharakteryzowano również bazę reguł opracowanego systemu oraz mechanizm wnioskowania i defuzyfikacji. Przedstawiono zastosowanie opracowanego systemu na wybranych przykładach.
Rocznik
Strony
35--50
Opis fizyczny
Bibliogr. 44 poz., fot., rys., tab., wykr.
Twórcy
  • State Mining Authority, District Mining Office in Cracow, Lubicz 25, 31-503 Kraków, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 31-352, Kraków, Poland
Bibliografia
  • [1] Alavi I., Alinead-Rokny H., 2011. Comparison of Fuzzy AHP and Fuzzy TOPSIS Methods for Plant Species Selection (Case Study: Reclamation Plan of Sungun Copper Mine; Iran). Australian Journal of Basic and Applied Science 5 (12), 1104-13.
  • [2] Alexander M., 1998. The Effectiveness of Small-Scale Irrigated Agriculture in the Reclamation of Mine land Soils on the Jos Plateau of Nigeria. Land Degrad. Dev. Land Degradation & Development 7 (1), 77-85.
  • [3] Bandopadhyay S., Chattopadhyay A., 1986. Selection of Post Mining Uses of Land via Fuzzy Algorithim. In Ramani RV (ed). Proceedings of the 19th international symposium on the application of computers in mine planning (APCOM). SME/AIME., 321-32.
  • [4] Bascetin A., 2007. A decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine. Environmental Geology Environ Geol. 57, 663-72.
  • [5] Bell L.C., 2001. Establishment of native ecosystems after mining Australian experience across diverse biogeographic zones. Ecological Engineering 17, 179-186.
  • [6] Bielecka M., Król-Korczak, J., 2010. Hybrid expert system aiding design of post-mining regions restoration. Ecological Engineering 36, 1232-1241.
  • [7] Brodie M.J., 1995. Corporate consideration in mine decommissioning (Golder Associated Ltd, Vancouver, British Columbia, Canada). Canadian Institute of Mining and Metallurgy Bulletin.
  • [8] Brown M.T., 2005. Landscape restoration following phosphate mining: 30 years of coevolution of science, industry and regulation. Ecological Engineering 24, 309-329.
  • [9] Buchanan D., 2005. Guidelines for exploration and Mining Investment. RMG’s Explorations and Mining Investments Conference.
  • [10] Burrough P.A., 1989. Fuzzy mathematical methods for soil survey and land evaluation. J. Soil Sci. 40, 477-492.
  • [11] Cairns J., 1972. Ecological Considerations in Reclaiming Surface Mined Lands. Minerals and the Environment 1 (3), 83-89.
  • [12] Cao X., 2007. Regulating Mine Land Reclamation in Developing Countries: The case of China. Land Use Policy 24, 472-83.
  • [13] Cheng L., Hu Z., Lou S., 2017. Improved methods for fuzzy comprehensive evaluation of the reclamation suitability of abandoned mine lands. International Journal of Mining, Reclamation and Environment 31 (3), 212-229. doi:10.1080/17480930.2016.1167305.
  • [14] Coppin N.J., Bradshaw A.D., 1982. Quarry reclamation. Mining Journal Books. London.
  • [15] Cox E., 1994. The Fuzzy Systems Handbook. Academic Press, London.
  • [16] Davis T.S., Margolis, K.D., 1979. Brownfields: A comprehensive guide to redeveloping contaminated property. Amer. Bar Ass, Chicago.
  • [17] Doležalová J., Vojar J., Smolová D., Solský M., Kopecký O., 2012. Technical reclamation and spontaneous succession produce different water habitats: A case study from Czech post-mining sites. Ecological Engineering 43, 5-12, https://doi.org/10.1016/j.ecoleng.2011.11.017.
  • [18] Drummond M., Loveland T., 2010. Land-use Pressure and a Transition to Forestcover Loss in the Eastern United States. Bioscience 60 (4), 286-98.
  • [19] Ebrahimabadi A., 2017. Selecting Proper Plant Species for Mine Reclamation Using Fuzzy AHP Approach (Case Study: Chadormaloo Iron Mine of Iran). Archives of Mining Sciences 61 (4), 713-728, doi:10.1515/amsc-2016-0049.
  • [20] Glen M., 1994. The changing role of opencast coal restoration in landscape regeneration. Miner. Plan. 38, 29-31.
  • [21] Górniak-Zimróz J., Malewski J., 2004. The classification of mining voids focused on their use for municipal wastes management. Prace naukowe Instytutu Górnictwa Politechniki Wrocławskiej 107, 39, 233-245.
  • [22] Hancock G.R., 2004. The use of landscape evolution models in mining rehabilitation design. Environ. Geol. 46, 561-573.
  • [23] Hao G., Yin Y., Xianke Y., Lichang Y., Di S, Liying M., 2010. Study on ecological characteristic and reclamation in Xianshui coal mining area, Guizhou, China. Int. J. Min. Reclam. Environ. 24,18-33.
  • [24] Hendrychová M., 2008. Reclamation success in post-mining landscapes in the Czech Republic: A review of pedological and biological studies. J. Landsc. Stud. 1, 63-78.
  • [25] Karan, S.K., Samadder S.R., Maiti S.K., 2016. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. Journal of Environmental Management 182, 272-283. https://doi.org/10.1016/j.jenvman.2016.07.070.
  • [26] Król-Korczak J., 2016. Application of fuzzy system to support the selection of the reclamation of post-mining of natural aggregates. PhD thesis. AGH University of Science and Technology, Faculty of Mining and Geoengineering (in Polish).
  • [27] Masoumi I., Naraghi S., Rashidi-nejad F., et al., 2014. Application of fuzzy multi-attribute decision-making to selekt and to rank the post-mining land-use. Environ. Earth. Sci. 72, 1, 221-231. https://doi.org/10.1007/s12665-013-2948-0.
  • [28] Miao Z., Marrs R., 2000. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China. Journal of Environmental Management 59 (3), 205-215. https://doi.org/10.1006/jema.2000.0353.
  • [29] Mishra S.K., Hitzhusen F.J., Sohngen B.L., Guldmann J.M., 2012. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio. Journal of Environmental Management 100, 52-58. https://doi.org/10.1016/j.jenvman.2012.01.021.
  • [30] Narrei S., Osanloo M., 2011. Post-Mining Land-Use Methods Optimum Ranking, Using Multi Attribute Decision Techniques with Regard to Sustainable Resources Management. OIDA International Journal of Sustainable Development 2, 11, 65-76.
  • [31] Palogos I., Galetakis M., Roumpos Ch., Pavloudakis F., 2017. Selection of optimal land uses for the reclamation of surface mines by using evolutionary algorithms. International Journal of Mining Science and Technology 27 (3), 491-498. https://doi.org/10.1016/j.ijmst.2017.03.008.
  • [32] Parrotta J.A., Knowles O.H., 2001. Restoring tropical forests on lands mined for bauxite: Examples from the Brazylian Amazon. Ecological Engineering 17, 219-239.
  • [33] Pavloudakis F., Galetakis M., Roumpos Ch., 2009. A spatial decision support system for the optimal environmental reclamation of open-pit coal mines in Greece. International Journal of Mining, Reclamation and Environment 23 (4), 291-303.
  • [34] Piegat A., 1999. Modelowanie i sterowanie rozmyte. Akademicka Oficyna Wydawnicza EXIT, Warszawa.
  • [35] Ricks G., 1995. Closure considerations in environmental impact statements. Minerals Industry International, London.
  • [36] Schaaf W., 2001. What can element budgets of false-time series tell us about ecosystem development on post-lignite mining sites? Ecological Engineering 17, 241-252.
  • [37] Sklenička P., Lhota T., 2002. Landscape heterogeneity – a quantitative criterion for landscape reconstruction. Landsc. and Urban Plan. 58, 147-156.
  • [38] Sklenička P., Přikryl I., Svoboda I., Lhota T., 2004. Non-productive principles of landscape rehabilitation after long-term open-cast mining in Northwest Bohemia. The South African Institute of Mining and Metallurgy Journal 104, 83-88.
  • [39] Skousen J., Zipper C., 2014. Post-mining policies and practices in the Eastern USA coal region. International Journal of Coal Science and Technology 1 (2), 135-151.
  • [40] Soltanmohammadi H., Osanloo M., Bazzazi A., 2010. An analytical approach with a reliable logic and a ranking policy for post-mining land-use determination. Land Use Policy 27, 364-72.
  • [41] Sweigard R.J., Ramani R.V., 1988. Evaluation of postmining land use plans using fuzzy set analysis. Transactions of SME-AIME Annual Meeting, New Orleans, LA 282, 1854-1859.
  • [42] Uberman R., Ostrega A., 2005. Applying the analytic hierarchy process in the revitalization of post-mining areas field. ISAHP, Honolulu.
  • [43] Wiegleb G., Felinks B., 2001. Primary succession in post-mining landscapes of Lower Lusatia – chance or necessity. Ecological Engineering 17, 199-217.
  • [44] Zimmerman M., 2016. Development of a Decision Support System for Post Mining Land Use on Abandoned Surface Coal Mines in Appalachia. International Development, Community and Environment (IDCE), Paper 87.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2686f4c3-3602-4e44-98a0-d550738d9d40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.