Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Klaipėda City is located in the Southeast Baltic Sea region, where sea level rise has been observed for decades. The Klaipėda Strait, which separates the Baltic Sea and the Curonian Lagoon, where the port is located, is also more prone to sudden extreme changes in water levels, usually caused by windstorms. Extreme sea level changes pose a threat to port operations, technical structures, city residents, buildings, and infrastructure. Fluctuations in sea levels also affect the water level of the Danė River, which enters the Klaipėda Strait and divides the city into two parts. Therefore, this study aims to determine the past extreme sea level events and their influence on floods in the Danė River within Klaipėda City from 1961 to 2022. For this, the impact of meteorological parameters caused dangerous sea level rises in the Klaipėda Strait, and the following rise of the Danė River was studied. The results show that the annual mean, annual mean maximum, and annual mean minimum water levels in the Klaipėda Strait increased from 1961 to 2022. Also, the number of events where the water level in the Klaipėda Strait was ≥ 100 cm in the Baltic Elevation System was increasing. The increasing frequency of extreme water level events in the Klaipėda Strait puts urban areas at greater risk from Danė River compound floods.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 66304
Opis fizyczny
Bibliogr. 46 poz., fot., rys., tab., wykr.
Twórcy
autor
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
autor
- Faculty of Physics, Vilnius University, Vilnius, Lithuania
autor
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
autor
- Center for Social Geography and Regional Studies, Faculty of the Social Sciences and Humanities, Klaipėda University, Klaipėda, Lithuania
Bibliografia
- 1. BACC I Author Team, 2008. Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, Springer-Verlag, Berlin-Heidelberg, 473 pp. https://doi.org/10.1007/978-3-540-72786-6
- 2. BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, Springer International Publishing. https://doi.org/10.1007/978-3-319-16006-1
- 3. Bevacqua, E., Maraun, D., Vousdoukas, M.I., Voukouvalas, E., Vrac, M., Mentaschi, L., Widmann, M., 2019. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci. Adv. 5(9), eaaw5531. https://doi.org/10.1126/sciadv.aaw5531
- 4. Borradaile, G.J., 2003. Statistics of earth science data: their distribution in time, space, and orientation. Springer, Berlin, 351 pp.
- 5. Čekanavičius, V., Murauskas, G., 2004. Statistika ir jos taikymai. II knyga. Vilnius: TEV.
- 6. Čepienė, E., Dailidytė, L., Stonevičius, E., Dailidienė, I., 2022. Sea level rise impact on compound coastal river flood risk in Klaipėda city (Baltic Coast, Lithuania). Water 14(3), 414. https://doi.org/10.3390/w14030414
- 7. Dailidienė, I., Davulienė, L., Kelpšaitė, L., Razinkovas, A., 2012. Analysis of the climate change in Lithuanian coastal areas of the Baltic Sea. J. Coastal Res. 28(3), 557-569. https://doi.org/10.2112/JCOASTRES-D-10-00077.1
- 8. Dailidienė, I., Davulienė, L., Tilickis, B., Stankevičius, A., Myrberg, K., 2006. Sea level variability at the Lithuanian coast of the Baltic Sea. Boreal Environ. Res. 11, 109-121.
- 9. Environmental Protection Agency, 2018. Potvynių Direktyvos įgyvendinimas [Implementation of the Floods Directive]. Available online: https://vanduo.old.gamta.lt/cms/index?rubricId=6d87deab-3ecc-412a-9b66-7fd6361f26ba (accessed on 16 September 2023).
- 10. Environmental Protection Agency, 2020. Preliminaraus Potvynių Rizikos Vertinimo Atnaujinimas 2011–2018 m. [Update of the Preliminary Flood Risk Assessment 2011–2018], Aplinkos Apsaugos Agentūra. Available online: https://vanduo.old.gamta.lt/files/Preliminary_flood_risk_assessment_2011_2018.pdf (accessed on 17 September 2023).
- 11. Ganguli, P., Merz, B., 2019. Trends in compound flooding in northwestern Europe during 1901–2014. Geophys. Res. Lett. 46(19), 10810-10820.
- 12. General Plan of Klaipėda City municipality, 2021. Klaipėdos Miesto Savivaldybės Bendrasis Planas. Sprendiniai. Aiškinamasis Raštas [General Plan of Klaipėda City municipality. Solutions, Explanatory Note]. Administration of Klaipėda City Municipality. Available online: https://www.klaipeda.lt/data/public/uploads/2021/03/klaipedos-bp-aiskinamasis-rastas-2021-03-09.pdf
- 13. Gräwe, U., Klingbeil, K., Kelln, J., Dangendorf, S., 2019. Decomposing mean sea level rise in a semi-enclosed basin, the Baltic Sea. J. Climate 32(11), 3089-3108. https://doi.org/10.1175/JCLI-D-18-0174.1
- 14. Hieronymus, M., Dieterich, C., Andersson, H., Hordoir, R., 2018. The effects of mean sea level rise and strengthened winds on extreme sea levels in the Baltic Sea. Theoretical and Applied Mechanics Lett. 8(6), 366-371. https://doi.org/10.1016/j.taml.2018.06.008
- 15. Hurrell, J., Kushnir, Y., Ottersen, G., Visbeck, M., 2003. An Overview of the North Atlantic Oscillation. [In:] The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys. Monogr. Vol. 134, American Geophysical Union, 1-35.
- 16. Hünicke, B., Zorita, E., 2016. Statistical analysis of the acceleration of Baltic mean sea-level rise, 1900–2012. Front. Mar. Sci. 3, 125. https://doi.org/10.3389/fmars.2016.00125
- 17. Hünicke, B., Zorita, E., Soomere, T., Madsen, K.S., Johansson, M., Suursaar, Ü., 2015. Recent Change – Sea Level and Wind Waves. [In:] Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. The BACC II Author Team (Eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-16006-1_9
- 18. Jarmalavičius, D., Žilinskas, G., Pupienis, D., 2015. Stipraus štormo „Feliksas“ padariniai Lietuvos jūriniame krante. Geologija Geografija 1(1). https://doi.org/10.6001/geol-geogr.v1i1.3068
- 19. Katinas, V., Marčiukaitis, M., Gecevičius, G., Markevičius, A., 2017. Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania. Renew. Energ. 113, 190-201. https://doi.org/10.1016/j.renene.2017.05.071
- 20. Kirezci, E., Young, I.R., Ranasinghe, R., Muis, S., Nicholls, R.J., Lincke, D., Hinkel, J., 2020. Projections of globalscale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 10(1), 1-12. https://doi.org/10.1038/s41598-020-67736-6
- 21. Kowalewska-Kalkowska, H., Wisniewski, B., 2009. Storm surges in the Odra mouth area during the 1997–2006 decade. Boreal Environ. Res. 14(1), 183.
- 22. Kowalewska-Kalkowska, H., 2021. Storm-Surge Induced Water Level Changes in the Odra River Mouth Area (Southern Baltic Coast). Atmosphere 12, 1559. https://doi.org/10.3390/atmos12121559
- 23. Kulikov, E.A., Fain, I.V., Medvedev, I.P., 2015. Numerical modeling of anemobaric fluctuations of the Baltic Sea level. Russian Meteorol. Hydrol. 40(2), 100-108. https://doi.org/10.3103/S1068373915020053
- 24. Meier, H.M., Broman, B., Kjellström, E., 2004. Simulated sea level in past and future climates of the Baltic Sea. Climate Res. 27(1), 59-75. https://doi.org/10.3354/cr027059
- 25. Meier, H.E.M., 2015. Projected Change – Marine Physics. [In:] Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. The BACC II Author Team (Eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-16006-1_13
- 26. Mühr, B., Eisenstein, L., Pinto, J.G., Knippertz, P., Mohr, S., Kunz, M., 2022. CEDIM Forensic Disaster Analysis Group (FDA): Winter storm series: Ylenia, Zeynep, Antonia (int: Dudley, Eunice, Franklin) – February 2022 (NW & Central Europe). https://doi.org/10.5445/IR/1000143470
- 27. Omstedt, A., Pettersen, Ch., Rodhe, J., Winsor, P., 2004. Baltic Sea climate: 200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Climate Res. 25, 205-216. https://doi.org/10.3354/cr025205
- 28. On Approval (...), 2020. Lietuvos Respublikos Aplinkos Ministro Įsakymas dėl Stichinių, Katastrofinių Meteorologinių ir Hidrologinių Reiškinių Rodiklių Patvirtinimo 2011 m. lapkričio 11 d. Nr. D1-870 [On Approval of Indicators of Natural, Catastrophic Meteorological and Hydrological Phenomena. Order of the Minister of the Environment of the Republic of Lithuania. 11 November 2011 No. D1-870]. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.412088/asr (accessed on 5 February 2023).
- 29. Owen, L.E., Catto, J.L., Stephenson, D.B., Dunstone, N.J., 2021. Compound precipitation and wind extremes over Europe and their relationship to extratropical cyclones. Weather Clim. Extremes 33, 100342. https://doi.org/10.1016/j.wace.2021.100342
- 30. Pepler, A., Dowdy, A., 2021. Fewer deep cyclones projected for the midlatitudes in a warming climate, but with more intense rainfall. Environ. Res. Lett. 16(5), 054044.https://doi.org/10.1088/1748-9326/abf528
- 31. Pindsoo, K., Soomere, T., 2020. Basin-wide variations in trends in water level maxima in the Baltic Sea. Cont. Shelf Res. 193, 104029. https://doi.org/10.1016/j.csr.2019.104029
- 32. Quinn, T., Bousquet, F., Guerbois, C., Heider, L., Brown, K., 2019. How local water and waterbody meanings shape flood risk perception and risk management preferences. Sustain. Sci. 14, 565-578. https://doi.org/10.1007/s11625-019-00665-0
- 33. Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Larsén, X. G., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., Wasmund, N., 2022. Natural hazards and extreme events in the Baltic Sea region, Earth Syst. Dynam. 13, 251-301. https://doi.org/10.5194/esd-13-251-2022
- 34. Stonevičius, E., Valiuškevičius, G., Rimkus, E., Kažys, J., 2010. Potvynių Smeltėje Poveikio Švelninimo Ir Adapatacijos Prie Jų Galimybės Atsižvelgiant Į Numatomus Klimato Pokyčius [Possibilities of Mitigation and Adaptation To The Effects Of Floods In Smelte Taking Into Account The Expected Climate Change]. Vilnius University, Vilnius, Lithuania.
- 35. Sinay, L., Carter, R.W., 2020. Climate change adaptation options for coastal communities and local governments. Climate 8(1), 7. https://doi.org/10.3390/cli8010007
- 36. Šakurova, I., Kondrat, V., Baltranaitė, E., Vasiliauskienė, E., Kelpšaitė-Rimkienė, L., 2023. Assessment of Coastal Morphology on the South-Eastern Baltic Sea Coast: The Case of Lithuania. Water 15(1), 79. https://doi.org/10.3390/w15010079
- 37. Vaidogas, E.R., Juocevičius, V., 2011. A critical estimation of data on extreme winds in Lithuania. J. Environ. Eng. Landscape Manage. 19(2), 178-188. https://doi.org/10.3846/16486897.2011.579452
- 38. Vautard, R., van Oldenborgh, G.J., Otto, F.E.L., Yiou, P., de Vries, H., van Meijgaard, E., Stepek, A., Soubeyroux, J.- M., Philip, S., Kew, S.F., Costella, C., Singh, R., Tebaldi, C., 2019. Human influence on European winter wind storms such as those of January 2018, Earth Syst. Dynam. 10, 271-286. https://doi.org/10.5194/esd-10-271-2019
- 39. Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Feyen, L., 2017. Extreme sea levels on the rise along Europe’s coasts. Earth’s Future 5(3), 304-323. https://doi.org/10.1002/2016EF000505
- 40. Vousdoukas, M.I., Voukouvalas, E., Annunziato, A., Giardino, A., Feyen, L., 2016. Projections of extreme storm surge levels along Europe. Clim. Dynam. 47(9), 3171-3190. https://doi.org/10.1007/s00382-016-3019-5
- 41. Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R.J., Umgiesser, G., Willems, P., 2014. Changing extreme sea levels along European coasts. Coast. Eng. 87, 4-14. https://doi.org/10.1016/j.coastaleng.2013.10.017
- 42. Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E., 2021. Sea level dynamics and coastal erosion in the Baltic Sea region, Earth Syst. Dynam. 12, 871-898. https://doi.org/10.5194/esd-12-871-2021
- 43. Weisse, R., Weidemann, H., 2017. Baltic Sea extreme sea levels 1948–2011: Contributions from atmospheric forcing. Procedia IUTAM, 25, 65-69. https://doi.org/10.1016/j.piutam.2017.09.010
- 44. Wolski, T., Wiśniewski, B., 2021. Characteristics and Long- Term Variability of Occurrences of Storm Surges in theBaltic Sea. Atmosphere 12, 1679. https://doi.org/10.3390/atmos12121679
- 45. Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaitė, Ž., 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56(2), 259-290. https://doi.org/10.5697/oc.56-2.259
- 46. Wolski, T., Wiśniewski, B., Musielak, S., 2016. Baltic Sea datums and their unification as a basis for coastal and seabed studies. Oceanol. Hydrobiol. Stud. 45(2), 239-258. https://doi.org/10.1515/ohs-2016-0022
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-268605f0-c12a-4ee7-b6c1-9784da8f1b45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.