Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present the life distribution of a device subject to shocks governed by phase-type distributions. The probability of failures after shock follows discrete phase-type distribution. Lifetimes between shocks are affected by the number of cumulated shocks and they follow continuous phase-type distributions. The device can support a maximum of N shocks. We calculate the distribution of the lifetime of the device and illustrate the calculations by means of a numerical application. Computational aspects are introduced. This model extends other previously considered in the literature.
Słowa kluczowe
Rocznik
Tom
Strony
295--298
Opis fizyczny
Bibliogr. 6 poz., wykr.
Twórcy
autor
- Universidad de Granada, Granada, Spain
autor
- Universidad de Jaen, Jaen, Spain
autor
- Universidad de Granada, Granada, Spain
Bibliografia
- [1] Bellman, R. (1970). Introduction to matrix analysis. Mac-Graw Hill, New York.
- [2] Esary, J. D., Marshall, A. W., & Proschan, F. (1973). Shock Models and Wear Processes. Annals of Probability, 1, 627-649.
- [3] Manoharan, M., Singh, H., & Misra, N. (1992). Preservation of phase-type distributions under Poisson shock models. Advances in Applied Probability, 24, 223-225.
- [4] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models-An Algorithm Approach. John Hopkins University Press, Baltimore.
- [5] Neuts, M. F., & Bhattacharjee, M. C. (1981). Shock models with phase type survival and shock resistance. Naval Research Logistic, 28, 213-219.
- [6] Neuts, F., Pérez-Ocón, R., Torres-Castro, I. (2000). Repairable models with operating and repair times governed by phase type distributions. Advances in Applied Probability, 34, 468-479.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2683dbe3-6f69-49d5-a580-299d49b344f8