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1. Introduction 
 

The classical shocks model of Esary et al. [2] study 

the lifetime of a device subject to shocks that arrive 

randomly following a Poisson process {N(t),t≥0}. The 

device has a probability kP  of survival to k shocks. 

Then, the survival function of the model H(t) is given 

by: 

 

       
0

k

k

H t P N t k P




                                     (1) 

 

The authors study this model under a non-parametric 

methodology, considering reliability classes. Neuts et 

al. [5], introduced phase-type distributions and 

calculated explicitly the lifetime distribution of the 

device. Manoharan et al. [3] considered a finite 

mixture of homogeneous Poisson process as arrival 

process. In these previous papers, the number of 

shocks that arrive to the device is unlimited. In [6] 

PH-distributions are used to study a model submitted 

to a limited number of failures. 

We present a model limiting the number of shocks 

that the device can support. The probability of failure 

due to the shocks follows a discrete phase-type 

distribution. The interarrival times between shocks 

depend on the number of cumulated shocks. 

The process that governs the system is a Markov one 

with vectorial state space. We calculate the lifetime 

distribution of the device and present a numerical 

example illustrating the calculations. 

In Section 2 the shock model is presented. In Section 

3 the Markov model that governs the system is 

constructed, and the lifetime distribution of the device 

determined. In Section 4 a numerical application is 

performed. 

Given that the phase-type distributions play a 

fundamental role throughout the paper, we define 

them in the discrete and continuous cases. More 

details about these distributions can be seen in Neuts 

[4]. 

 

2. Definitions 

Definition 1 The distribution H(⋅) on [o,∞[ is a phase-

type distribution (PH-distribution) with representation 

(α,T) if it is the distribution of the time untill the 

absorption in a Markov process on the states 

{1,...,m,m+1} generator 
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Abstract 
 

We present the life distribution of a device subject to shocks governed by phase-type distributions. The probability 

of failures after shock follows discrete phase-type distribution. Lifetimes between shocks are affected by the 

number of cumulated shocks and they follow continuous phase-type distributions. The device can support a 

maximum of N shocks. We calculate the distribution of the lifetime of the device and illustrate the calculations by 

means of a numerical application. Computational aspects are introduced. This model extends other previously 

considered in the literature. 
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and initial row probability vector α of order m. We 

assume that the states {1,...,m} are all transient. 

Throughout this paper e denotes a column vector with 

all components equal to one the dimension of which is 

determined by the context. The matrix T of order m is 

non-singular with negative diagonal entries and non-

negative off-diagonal entries and satisfies –Te=T
0
. 

The distribution of  H(⋅) is given by 

 

   H(x)=1-αexp(Tx)e, x≥0 

 

It will be denoted that H(·) follows PH(α,T) 

distribution.  

 

Definition 2 A density {pk} of the nonnegative 

integers is of phase type if and only if there exists a 

finite Markov chain with transition probability matrix 

P of order n+1 of the form 

 

   

0

0 1

S S 
 
 

 

 

and initial probability vector (β,βn+1), where β is a row 

n-vector. Here S is a subestochastic matrix such that 

Se+S
0
=e, and (I-S) is non-singular. The density of the 

time until absorption is given by 

 

   
0 1

1 0

,

,  for k 1
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It will be denoted that {pk} follows a PHd(β,S). 

We use the Kronecker product (see [1]). 

 

3. Shock model 
 

Suppose that a device is subjected to shocks according 

to the following assumptions. 

 

1. Let X
(k)

 be the interarrival times between the 

shocks kth and (k+1)th, k=0,1,... These random 

times follow distributions PH(β
(k)

,S
(k)

) of order nk. 

2. The device can accumulate a maximum of N 

shocks, in such a way that it is replaced by a new 

one to the arrival of the N+1 shock. We denote by 

pk the probability of failure of the device due to the 

arrival of the kth shock, k≥1. We assume that pk 

follows a distribution PHd(γ,L) of order N+1. 

 
This representation is given by γ=(1,0,…,0) and 
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The entries lk, k=1,...,N, denote the conditional 

probability that the system will survive to the kth 

shock, given that it has survived to the (k-1)th shock. 

These lk are useful to find a representation to the 

distribution {pk}. It is clear that 

 

   
1 0 , 1k

kp L L k    

 

The survival probability to the kth shock is 
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                             (2) 

 

Under the assumptions the survival function (1) 

follows a PH-distribution that will be calculated 

 

4. Markov model   

Under these assumptions, the probabilistic model that 

governs the system is a Markov process. The 

exponential occupied states by the device will be 

denoted by (k,i), k being the number of cumulated 

shocks, i the phase of the random variable X
(k)

. We 

group these states in sets, named macro-states, that 

will be denoted by k, k=0,1,...,N. The number of 

exponential states of the macro-state k is nk+1. The 

infinitesimal generator of the Markov process is built 

in terms of the transition between macro-states, and, 

consequently, it will be a generator formed by blocks. 

 

We denote by Tk the lifetime of the device when the 

failure occurs at the arrival of the (k+1)th shock. It is 

clear that 

 

   
 

0

,1 1k

k
i

i

T X k N


                                       (3) 

 

This random variable is the sum of independent 

random variables PH-distributed and follows a 

distribution PH(g
(k)

,G
(k)

). We calculate this 

representation.  

If the device fails at the (k+1)th shock, it has survived 

to the first k shocks. Thus, the transitions between the 

up macro-states to the occurrence of the failure are 

0→1→2→⋅ ⋅ ⋅ →k. These transitions j→j+1, j= 
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0,1,...,k, occur when a non-fatal shock arrives being 

the device in the macro-state j, and these are governed 

by the absorption vector S
0(j)

. Then, the new 

interarrival period initiates following the initial vector 

β
(j)

. Thus, the matrix G
(k)

 is 
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We assume that the device initiates with 0 shocks, so 

the initial vector g
(k)

 is given by 

 

   
    0

,0, ,0 , 0,1, ,
k

g k N   . 

 

Denoting by T the lifetime of the system, we have 
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k
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We determine the distribution of the random variable 

T as follows. This is the distribution of a finite 

mixture of PH-distributions, it is a PH-distribution 

with well-known representation (see [4]) given by 

(v,V), with, 
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               (5) 

 

The analytic expression of the survival function of T 

is: 

     

   

 

    1

0

( ) exp

exp , 0
N
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k
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                             (6) 

 

5. Numerical application 

We illustrate by a numerical example the calculations 

throughout the paper. For the shocks, we assume that 

they arrive erratically, formalized by means of 

hyperexponential distributions as interarrival times. 

We will assume that the device can undergo a 

maximum of three shocks, that is, it is replaced when 

the third shock arrives. The failure probabilities to the 

failures are given by p₀ = 0, p₁ = 0.1, p₂ = 0.6, 

p₃ = 0.3. It will be assumed that the interarrival times 

between shocks follow the PH-distributions: 
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From these, we obtain the lifetime distributions for the 

device due to shocks, the random variables Tk: 
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In Figures 1 and Figure 2 we plot the survival and the 

failure rate functions, respectively. The survival 

function decreases quickly. The failure rate function 

increases quickly, reach a maximum, and then, 

decreases slowly and becomes almost constant. So, 

there is a high risk of failure when it starts, and once a 

short interval of time has passed, it tends to be 

constant. 

 
 

Figure 1. Survival function for the shock model 

 

 
Figure 2. Failure rate function for the shock model 
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