PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Study on the Microplastics Abundance and Characteristics in Marine Protected Area in Karimunjawa National Park, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microplastics (MPs) are discovered in various places even encroaching on marine protected areas (MPA). The aim of this research is to investigate the occurrences of MPs pollutant in MPA and non-MPA in Karimunjawa National Park (KNP). The results showed that MPs from sea surface water were higher in MPA than non-MPA with range as 47.89–106.20 items/L, dominated by fragment, 1–50 µm size, black color and HDPE, LDPE, PP, Nylon, PVC, ABS, and PET in polymer types. It induced since it supplied from it surrounding, specifically the south of MPA, whereas there have been cottage constructions generating many marine debris. These findings indicate that occurrence of MPs still dominantly influenced from anthropogenic activity. However, the hydrodynamic and MPs characteristic as well play an important role in MPs distributions.
Rocznik
Strony
119--130
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto SH Tembalang, Semarang, 50275, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto SH Tembalang, Semarang, 50275, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto SH Tembalang, Semarang, 50275, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto SH Tembalang, Semarang, 50275, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto SH Tembalang, Semarang, 50275, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto SH Tembalang, Semarang, 50275, Indonesia
  • Doctoral Program of Marine Science, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto SH Tembalang, Semarang, 50275, Indonesia
Bibliografia
  • 1. Alam, F.C., & Rachmawati, M. 2020. Microplastic research development in Indonesia Journal of Precipitation 17(3), 344-352. [in Indonesian] https:// doi.org/10.14710/presipitasi.v17i3.344-352
  • 2. Alhaq, M.S., Suryoputro, A.A.D., Zainuri, M., Muslim., & Marwoto, J. 2021. Analysis of chlorophyll-a distribution and water quality in the waters of Sintok Island, Karimunjawa, Central Java. Indonesian Journal of Oceanography 3(4), 01-12. [in Indonesian] https://doi.org/10.14710/ijoce.v3i4.11728
  • 3. Anggrahini, W., Andromeda, V.F., Abritia, R.N., & Putra, I.M.W.S. 2022. Sea transportation strategy to support tourism development in Karimunjawa. Journal of Marine Transportation Research 24(1), 11-20. [in Indonesian] http://dx.doi.org/10.25104/ transla.v24i1.1947
  • 4. Arthur, C., Baker, J., & Bamford, H. 2009. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. Group, (January): 530.
  • 5. Auta, H.S., Emenike, C.U., Fauziah, S.H. 2017. Distribution and importance of microplastics in the marine environment. A review of the sources, fate, effects, and potential solutions. Environ. Int. 102, 165176. https://doi.org/10.1016/j.envint.2017.02.013
  • 6. Ballent, A., Corcoran, P. L., Madden, O., Helm, P. A., & Longstaffe, F. J. 2016. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar. Pollut. Bull. 110, 383–395. https://doi.org/10.1016/j. marpolbul.2016.06.037
  • 7. Barnes, D.K., Morley, S.A., Bell, J., Brewin, P., Brigden, K., Collins, M., Glass, T., GoodallCopestake, W.P., Henry, L., Laptikhovsky, V., Piechaud, N., Richardson, A., Rose, P., Sands, C.J., Schofield, A., Shreeve, R., Small, A., Stamford, T., & Taylor, B. 2018. Marine plastics threaten giant Atlantic Marine Protected Areas. Curr. Biol. 28, R1137–R1138. https:// doi.org/10.1016/j.cub.2018.08.064
  • 8. Bergmann, M., Wirzberger, V., Krumpen, T., Lorenz, C., Primpke, S., & Tekman, M.B. 2017. High quantities of microplastic in Arctic deep-sea sediments from the Hausgarten observatory. Environ. Sci. Technol. 51, 11000–11010. doi: 10.1021/acs.est.7b03331
  • 9. Berry, K.L.E., Epstein, H.E., Lewis, P.J., Hall, N.M., & Negri, A.P. 2019. Microplastic contamination has limited effects on coral fertilisation and larvae. Diversity 11(12), 228. https://doi.org/10.3390/d11120228
  • 10. Capo, X., Company, J.J., Alomar, C., Compa, M., Sureda, A., Grau, A., Hansjosten, B., Lopez-Vazquez, J., Quintana, J.B., Rodil, R., & Deudero, S. 2021. Long-term exposure to virgin and seawater exposed microplastic enriched-diet causes liver oxidative stress and inflammation in gilthead seabream Sparus aurata, Linnaeus 1758. Sci. Total Environ. 767, 144976. https://doi.org/10.1016/j.scitotenv.2021.144976
  • 11. Carbery, M., Herb, F., Reynes, J., Pham, C.K., Fong, W., & Lehner., R. 2022. How small is the big problem? Small microplastics. Marine Pollution Bulletin, 184, 114179. https://doi.org/10.1016/j. marpolbul.2022.114179.
  • 12. Chemello, G., Trotta, E., Notarstefano, V., Papetti, L., Renzo, L.D., Matiddi, M., Silvestri, C., Carnevali, O., & Gioacchini, G. 2023. Microplastics evidence in yolk and liver of loggerhead sea turtles (Caretta caretta), a pilot study. Environmental Pollution 337, 122589. https://doi.org/10.1016/j.envpol.2023.122589.
  • 13. Chen, Q., Li,Y., & Li, B. 2020. Is color a matter of concern during microplastic exposure to Scenedesmus obliquus and Daphnia magna? Journal of Hazardous Materials, 383, 121224. https://doi. org/10.1016/j.jhazmat.2019.121224.
  • 14. Cole, M., Lindeque, P., Halsband, C., & Galloway, T.S. 2011. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/J. MARPOLBUL.2011.09.025.
  • 15. Cowger, W., Steinmetz, Z., Gray, A., Munno, K., Lynch, J., Hapich, H., Primpke, S., Frond, D.H., Rochman, C., & Herodotou, O. 2021. Microplastic spectral classification needs an open-source community: Open specy to the rescue! Analytical Chemistry 93, 7543–7548. https://doi.org/10.1021/acs. analchem.1c00123.
  • 16. Cutroneo, L., Reboa, A, Besio, G., Borgogno, F., Canesi, L., Canuto, S., Dara, M., Enrile, F., Forioso, I., Greco, G., Lenoble, V., Malatesta, A., Mounier, S., Petrillo, M., Rovetta, R., Stocchino, A., Tesan, J., Vagge, G., & Capello, M. 2020. Correction to: Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment. Environmental Science and Pollution Research, 27(16): 20571. https://doi. org/10.1007/s11356-020-07783-8
  • 17. Damanik, E. 2012. The behavior of consumer in using recycled plastic crackle as container of readytoeat food at Pusat Pasar Tavip Binjai Jurnal Precure 1,18-14. [Indonesian]
  • 18. Dewi, I.S., Budiarsa, A., Ritonga, R.I., 2015. Distribution of microplastics in sediment in Muara Badak, Kutai Kartanegara Regency. DEPIK 4. [in Indonesian] https://doi.org/10.13170/depik.4.3.2888.
  • 19. Esiukova, E., Lobchuk, O., Haseler, M., & Chubarenko, I. 2021. Microplastic contamination of sandy beaches of national parks, protected and recreational areas in southern parts of the Baltic Sea. Marine Pollution Bulletin 173 (113002). https://doi. org/10.1016/j.marpolbul.2021.113002
  • 20. Garc´es-Ordo´nez, O., Saldarriaga-V´elez, J.F., Espinosa-Díaz, L.F., Canals, M., Sanchez-Vidal, A., & Thiel, M. 2022. A systematic review on microplastic pollution in water, sediments, and organisms from 50 coastal lagoons across the globe. Environmental Pollution 315 (120366). https://doi.org/10.1016/j. envpol.2022.120366
  • 21. Gunawan, A., Purwanto., & Satriadi, A. 2017. Directional Wave Spectrum Analysis in Karimunjawa Waters, Jepara Regency. Journal of Oceanography, 6(1): 01-09. http://ejournal-s1.undip.ac.id/index.php/jose
  • 22. Hall, N.M., Berry, K.L.E., Rintoul, L., & Hoogenboom, M.O. 2015. Microplastic ingestion by scleractinian corals. Mar. Biol. 162, 725–732. doi:10.1007/ s00227-015-2619-7
  • 23. Hartmann, N.B., Hüffer, T., Thompson, R.C., Hassellöv, M., Verschoor, A., Daugaard, A.E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M.P.,. Hess, M.C., Ivleva, N.P., Lusher, A.L., & Wagner, M. 2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047. https://doi.org/10.1021/acs.est.8b05297
  • 24. Himawan T., & Lestari, E.M. 2016. Quay Developing Program in Karimun Jawa Port to Supporting Tourism Activities. J. Pen.Transla 18(2), 92-101. [in Indonesian] https://doi.org/10.25104/transla.v18i2.1390
  • 25. Huang, W., Chen, M., Song, B., Deng, J., Shen, M., Chen, Q., Zeng, G., & Liang, J. 2021. Microplastics in the coral reefs and their potential impacts on corals: A mini-review. Science of The Total Environment, 762 (143112). https://doi.org/10.1016/j. scitotenv.2020.143112
  • 26. Huang, W., Chen, M., Song, B., Deng, J., Shen, M., Chen, Q., Zeng, G., & Liang, J. 2021. Microplastics in the coral reefs and their potential impacts on corals: A mini-review. Science of The Total Environment, 762, 143112. https://doi.org/10.1016/j. scitotenv.2020.143112
  • 27. Jaini, M., & Namboothri, N. 2022. Boat paint and epoxy fragments - Leading contributors of microplastic pollution in surface waters of a protected Andaman bay. Chemosphere 312, 137183. https:// doi.org/10.1016/j.chemosphere.2022.137183
  • 28. Januardi, R., Hartoko, A., & Purnomo, P.W. 2016. Habitat analysis and changes in coral reef area on Menjangan Besar Island, Karimunjawa Islands using satellite imagery. Manag Aquat Resour J 5 (4), 302-310. [in Indonesian] https://doi.org/10.14710/ marj.v5i4.14435
  • 29. Kankılıç, G.B., ˙ Koraltan, I., Erkmen, B., Çagan, A.S., Çırak, T., Ozen, M., Seyfe, M., Altındag, A., &¸anoglu, U.N.T. 2023. Size-selective microplastic uptake by freshwater organisms: Fish, mussel, and zooplankton. Environmental Pollution 336 (122445). https://doi.org/10.1016/j.envpol.2023.122445
  • 30. Kannankai, M.P., Babu, A.J., Radhakrishnan,A., Alex, R.K., Borah, A., & Devipriya, S.P. 2022. Machine learning aided meta-analysis of microplastic polymer composition in global marine environment. Journal of Hazardous Materials 440 (129801). https://doi.org/10.1016/j.jhazmat.2022.129801.
  • 31. Khalid, N., Aqeel, M., Noman, A., Hashem, M., Mostafa, Y.S., Alhaithloul, H.A.S., & Alghanem, S.M. 2021. Linking effects of microplastics to ecological impacts in marine environments. Chemosphere 264, 128541. https://doi.org/10.1016/j. chemosphere.2020.128541
  • 32. Kooi, M., Nes, E. H. V., Scheffer, M., & Koelmans, A. A. 2017. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971. https://doi. org/10.1021/acs.est.6b0 4702
  • 33. Kurniawan, R.R., Suprijanto, Y., & Ridlo, A. 2021. Microplastics in Sediments in Settlement Zones, Marine Protection Zones and Land Use Zones in Karimunjawa Islands, Jepara. Marina Oceanographic Bulletin 10(2), 189-199. [in Indonesian] https:// doi.org/10.14710/buloma.v10i2.31733
  • 34. Lie, S., Suyoko, A., Effendi, A.R., Ahmada, B., Aditya, H.W., Sallima, I.R., Arisudewi, N.PA.N., Hadid, N.I., Rahmasari, N., & Reza, A. 2018. Measurement of microplastic density in the Karimunjawa National Park, Central Java, Indonesia. Ocean Life, 2(2):5458. https://doi.org/10.13057/oceanlife/o0202xx.
  • 35. Marganita, D., Marwoto, J., & Widiaratih, R. 2022. Study of the movement of microplastics with parcels in the waters of Sintok Island, Karimunjawa Islands. Indonesian Journal of Oceanography (IJOCE) 4(2),22-28. [in Indonesian] https://doi. org/10.14710/ijoce.v4i2.14177
  • 36. Matthews, S., Mai, L., Jeong, C.-B., Lee, J.-S., Zeng, E.Y., & Xu, E.G. 2021. Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups. Comp. Biochem. Physiol. C Toxicol. Pharmacol, 247, 109056. https://doi.org/10.1016/j. cbpc.2021.109056.
  • 37. Muchlissin, S.I., Widyananto, P.A., Sabdono, A., & Radjasa, O.K. 2021. Abundance of microplastics in reef ecosystem sediments in Karimunjawa National Park Tropical Marine Journal 24(1),1-6. [in Indonesian] https://doi.org/10.14710/jkt.v24i1.9865
  • 38. Munasik., Romadhoni, A.A., & Helmi, M. 2021. Comparation of spatial patterns conditions of coral reefs Karimunjawa National Park. Maritime Journal, 14 (2),175-184. [in Indonesian] http://doi. org/10.21107/jk.v14i2.11436
  • 39. Nadia, M., Alkharis, N.H., & Malik, M.D.A. 2018. Differences of coral reef and coral community fish abundance condition based on zoning of Bengkoang Island, Karimunjawa. Maritime Journal, 11(10), 88-94. [in Indonesian] http://doi.org/10.21107/jk.v11i1.3709
  • 40. Ningrum, E.W., & Mufti, P. 2022. Microplastic contamination in Indonesian anchovies from fourteen locations. Biodiversitas Journal of Biological Diversity 23(1), 125-134. https://doi.org/10.13057/ biodiv/d230116
  • 41. Okamoto, K., Nomura, M., Horie, Y., & Okamura, H. 2022. Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes. Environmental Pollution 304,119253. https://doi.org/10.1016/j.envpol.2022.119253
  • 42. Purnomo, P.W., Purwanti, F., & Akhmad, D.S. 2022. Coral Reef Conditions at The Snorkeling Spots of The Karimunjawa National Park, Indonesia. Croatian Journal of Fisheries, 80: 77-86. https://doi. org/10.2478/cjf-2022-0008
  • 43. Reichert, J., Arnold, A.L., Hoogenboom, M.O., Schubert, P., & Wilke, T. 2019. Impacts of microplastics on growth and health of hermatypic corals are species specific. Environ Pollut 254, 113074. https://doi.org/10.1016/j.envpol.2019.113074
  • 44. Reichert, J., Schellenberg, J., Schubert, P., & Wilke, T. 2018. Responses of reef building corals to microplastic exposure. Environ Pollut 237, 955–960. https://doi.org/10.1016/j.envpol.2017.11.006
  • 45. Salsabila, Indrayanti, E., & Widiaratih, R. 2022. Karakteristik Mikroplastik Di Perairan Pulau Tengah, Karimunjawa. Indonesian Journal of Oceanography (IJOCE) 4(4):99-108. [in Indonesian] https:// doi.org/10.14710/ijoce.v4i4.15420
  • 46. Satya, E.D., Sabdono, A., Wijayanti, D.P., Helmi, M., Widiaratih, R., Agus Anugroho Dwi Suryoputra, A.A.D., Handoyo, G., & Puryajati, A.D. 2023. Mapping coral cover using Sentinel-2A in Karimunjawa, Indonesia. Biodiversitas, 24(2), 827-836. https:// doi.org/10.13057/biodiv/d240219.
  • 47. Senko, J.F., Nelms, S.E., Reavis, J.L., Witherington, B., Godley, B.J., & Wallace, B.P. 2020. Understanding individual and population-level effects of plastic pollution on marine megafauna. Endanger. Species Res. 43, 234–252. https://doi.org/10.3354/ esr01064.
  • 48. Seprandita, C.W., Suprijanti, Y., & Ridlo, A. 2022. Abundance of Microplastics in the Waters of the Settlement Zone, the Tourism Zone and the Protection Zone of the Karimunjawa Islands, Jepara. Marina Oceanographic Bulletin 11(1), 111-122. [in Indonesian] https://doi.org/10.14710/buloma.v11i1.30189
  • 49. Shamskhany, A., Li, Z., Patel, P., & Karimpour, S. 2021. Evidence of microplastic size impact on mobility and transport in the marine environment: A review and synthesis of recent research. Frontiers in Marine Science, 8(760649) doi: 10.3389/ fmars.2021.760649.
  • 50. Vasanthi, R. L., Arulvasu, C., Kumar, P., & Srinivasan, P. 2021. Ingestion of microplastics and its potential for causing structural alterations and oxidative stress in Indian green mussel Perna viridis – a multiple biomarker approach. Chemosphere. 283, 130979. https://doi.org/10.1016/j.chemosphere.2021.130979
  • 51. Viršek, M.K., Palatinus, A., Koren, S., Peterlin, M., Horvat, P., & Kržan, A. 2016. Protocol for Microplastics Sampling on the Sea Surface and Sample Analysis. Journal of Visualized Experiments 118. https://doi.org/10.3791/55161
  • 52. Waldschläger, K., Born, M., Cowger, W., Gray, A., & Schüttrumpf, H. 2020. Settling and rising velocities of environmentally weathered micro-and macroplastic particles. Environ. Res. 191:110192. https://doi.org/10.1016/j.envres.2020. 110192
  • 53. Wang, S., Zhong, Z., Li, Z., Wang, X., Gu, H., & Huang, W. 2021. Physiological effects of plastic particles on mussels are mediated by food presence. J. Hazard. Mater 404 (Pt A), 124136. https://doi. org/10.1016/j.jhazmat.2020.124136
  • 54. Warrier, A.K., Kulkarni, B., Amrutha, K., Jayaram, D., Valsan, G., & Agarwal, P. 2022. Seasonal variations in the abundance and distribution of microplastic particles in the surface waters of a Southern Indian Lake. Chemosphere 300, 134556. https://doi. org/10.1016/j.chemosphere.2022.134556
  • 55. Widiaratih, R., Maslukah, L., Triyulianti, I., Rugebregt, M.J., Nurhidayat., Hascaryo, A.P., & Sobaruddin, D, P. 2023. Abundance, characteristics, and distribution of microplastics in Banda Sea and Seram Sea, Indonesia. IOP Conf. Series: Earth and Environmental Science, ICTCRED 7th-2022, 1224:012026. https://doi.org/10.1088/1755-1315/1224/1/012026
  • 56. Widiaratih, R., Suryoputra, A.A.D., & Gentur Handoyo. 2022. Correlation of chlorophyll-a between nutrients and water quality in Seruni Island, Karimunjawa Indonesia. Jurnal Kelautan Tropis, 25(2), 249-256. [in Indonesian] https://doi.org/10.14710/ jkt.v25i2.14170.
  • 57. Xu, J.L., Thomas, K.V., Luo, Z., & Gowen, A.A. 2019. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends Anal Chem 119, 115629. https://doi. org/10.1016/j.trac.2019.115629.
  • 58. Yang, H., & Shi, C. 2019. Sediment grain-size characteristics and its sources of ten wind-water coupled erosion tributaries (the Ten Kongduis) in the Upper Yellow River. Water 11:115.
  • 59. Yuan, Z., Nag, R., & Cummins, E. 2022. Ranking of potential hazards from microplastics polymers in the marine environment. J. Hazard. Mater. 429, 128399 https://doi. org/10.1016/j.jhazmat.2022.128399.
  • 60. Zhao, S., Danley, M., Ward, J.E., Li, D., & Mincer, T.J. 2017. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Analytical Methods, 9(9), 1470–1478. https://doi.org/10.1039/C6AY02302A
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26832028-5bc7-4b7d-b3a6-7bd111f4491f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.