PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the considered work is to adjust mathematical modeling for mass transfer, to specific conditions resulting from presence of chemical surface reactions in the flow of the mixture consisting of helium and methanol. The thermocatalytic devices used for decomposition of organic compounds incorporate microchannels coupled at the ends and heated to 500ºC at the walls regions. The experiment data were compared with computational fluid dynamics results to calibrate the constants of the model’s user defined functions. These extensions allow to transform the calculations mechanisms and algorithms of commercial codes adapting them for the microflows cases and increased chemical reactions rate on the interphase between fluid and solid, specific for catalytic reactions. Results obtained on the way of numerical calculations have been calibrated and compared with the experimental data to receive satisfactory compliance. The model has been verified and the performance of the thermocatalytic reactor with microchannels under hydrogen production regime has been investigated.
Rocznik
Strony
3--26
Opis fizyczny
Bibliogr. 55 poz., rys., wz.
Twórcy
autor
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Energy Conversion Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Energy Conversion Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2., 00-908 Warszawa, Poland
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2., 00-908 Warszawa, Poland
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Energy Conversion Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Park S.H., Lee Y.D., Ahn K.Y.: Performance analysis of an SOFC/HCCI engine hybrid system: System simulation and thermo-economic comparison. Int. J. Hydrogen Energ. 39(2014), 1799–1810.
  • [2] Kalina J.: Modelling of fluidized bed biomass gasification in the quasi-equilibrium regime for preliminary performance studies of energy conversion plants. Chem. Process Eng. 32(2011), 2, 73–89.
  • [3] Kardaś D., Polesek-Karczewska S., Ciżmiński P., Stelmach S.: Prediction of coking dynamics for wet coal charge. Chem. Process Eng. 36(2015), 3, 291–303.
  • [4] Çelik D, Yildiz M.: Investigation of hydrogen production methods in accordance with green chemistry principles. Int. J. Hydrogen Energ. 42(2017), 3, 23395–23401.
  • [5] Chiron F.-X., Patience G., Rifflart S.: Hydrogen production through chemical looping using NiO/NiAl2O4 as oxygen carrier. Chem. Eng. Sci. 66(2011), 6324–6330.
  • [6] Martin-Sanchez N., Sanchez-Montero J., Izquierdo C., Salvador F.: Improving the production of hydrogen from the gasification of carbonaceous solids using supercritical water until 1000 bar. Fuel 208(2017), 558–565.
  • [7] Jóźwik P., Grabowski R. Bojar Z.: Catalytic activity of Ni3Al foils in methanol reforming. Mater. Sci. Forum 636-637(2010), 895–900.
  • [8] Jóźwik P, Polkowski W, Bojar Z.: Applications of Ni3Al based intermetallic alloys — current stage and potential perceptivities. Materials 8(2015), 2537–2568.
  • [9] Olafsen A., Daniel C., Schuurman Y., Raberg L.B., Olsbye U., Mirodatos C.: Light alkanes CO2 reforming to synthesis gas over Ni based catalysts. Catal. Today 115(2006), 179–185.
  • [10] Michalska-Domańska M., Jóźwik P., Jankiewicz B., Bartosewicz B., Siemiaszko D., Ste¸pniowski W.J., Bojar Z.: Study of cyclic Ni3Al catalyst pretreatment process for uniform carbon nanotubes formation and improved hydrogen yield in methanol decomposition. Materials Today: Proc. 3 S(2016), 171–177.
  • [11] Moussa S.O., El-Shall M.S.: High-temperature characterization of reactively processed nanostructure nickel aluminide intermetallics. J. Alloys Compd. 440(2007), 178–188.
  • [12] Badur J.: Numerical Modelling of Sustainable Combustion in Gas Turbines. Wydawn. IMP PAN, Gdańsk 2003 (in Polish).
  • [13] Jóźwik P., Badur J., Karcz M.: Numerical modelling of a microreactor for thermocatalytic decomposition of toxic compounds. Chem. Process Eng. 32(2011), 3, 215–227.
  • [14] Badur J., Ziółkowski P., Kornet S., Kowalczyk T., Banaś K., Bryk M., Ziółkowski P.J., Stajnke M.: Enhanced energy conversion as a result of fluidsolid interaction in micro- and nanoscale. J. Theor.. Appl. Mech. 56(2018), 1, 329–332.
  • [15] Krawczyk P. Badyda K.: Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer. Arch. Thermodyn. 32(2011), 4, 3–16.
  • [16] Badur J., Charun H.: Selected problems of heat exchange modelling in pipe channels with ball turbulisers. Arch. Thermodyn. 28(2007), 1, 65–87
  • [17] Niedźwiedzka A., Schnerr G., Sobieski W.: Review of numerical models of cavitating flows with the use of the homogeneous approach. Arch. Thermodyn. 37(2016), 2, 71–88.
  • [18] Furmański P., Seredyński M., Łapka P., Banaszek J.: Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase media. Arch. Thermodyn. 35(2014), 3, 81–103.
  • [19] Karwacki J., Nowakowska H., Lackowski M., Butrymowicz D.: Numerical analysis of evaporation in microchannel under capillary pumping. Arch. Thermodyn. 36(2015), 2, 3–25
  • [20] Ziółkowski P., Badur J.: On Navier slip and Reynolds transpiration numbers. Arch. Mech. 70(2018) 3, 269–300.
  • [21] Kowalczyk S., Karcz M., Badur J.: Analysis of thermodynamic and material properties assumptions for three-dimensional SOFC modelling. Arch. Thermodyn. 27(2006), 3, 21–38.
  • [22] Orszulik M., Fic A., Bury T., Składzień J.: A model of hydrogen passive autocatalytic recombiner and its validation via CFD simulations. Arch. Thermodyn. 34(2013), 4, 257–266.
  • [23] Żymełka P., Nabagło D., Janda T., Madejski P.: Online monitoring system of air distribution in pulverized coal-fired boiler based on numerical modeling. Arch. Thermodyn. 38(2017), 4, 109–125.
  • [24] Asendrych D., Niegodajew P.: Numerical study of the CO2absorber performance subjected to the varying amine solvent and flue gas loads. Chem. Eng. Commun. 204(2017), 5, 580–590.
  • [25] Xu Y., Ma Y., Sakurai J., Teraoka Y., Yoshigoe A., Demura M., Hirano T.: Effect of water vapor and hydrogen treatments on the surface structure of Ni3Al foil. Appl. Surf. Sci. 315(2014), 475-480.
  • [26] Ziółkowski P., Stajnke M., Jóźwik P.: Modeling of a mixture flow of helium and methanol in thermocatalytic reactor and chemical reactions on the intermetallic phase of Ni3Al. Trans. Inst. Fluid-Flow Mach. 138(2017), 33–73.
  • [27] Mitani H., Xu Y., Hirano T., Demura M., Tamura R.: Catalytic properties of Ni-Fe-Mg alloy nanoparticle catalysts for methanol decomposition. Catalysis Today 281(2017), 669–676.
  • [28] Michalska-Domańska M., Bystrzycki J., Jankiewicz B., Bojar Z.: Effect of the grain diameter of Ni-based catalysts on their catalytic properties in the thermocatalytic decomposition of methanol. CR Chim. 20(2017) 156–163.
  • [29] Xu Y., Yang J., Demura M., Hirano T., Matsushita Y., Teraoka Y., Katsuya Y.: Catalytic performance of Ni-Al nanoparticles fabricated by arc plasma evaporation for methanol decomposition. Int. J. Hydrogen Energ. 39(2014), 13156–13163.
  • [30] Kuo K.K., Acharya R.: Applications of turbulent and multiphase combustion. John Wiley & Sons, New Jersey 2012.
  • [31] Badur J., Ziółkowski P.J. Ziółkowski P.: On the angular velocity slip in nano flows. Microfluid Nanofluid 19(2015), 191–198.
  • [32] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Method H. 28(2018),1, 64–80.
  • [33] Modliński N., Madejski P., Janda T., Szczepanek K., Kordylewski W.: A validation of computational fluid dynamics temperature distribution prediction in a pulverized coal boiler with acoustic temperature measurement. Energy 92(2015), 77–86.
  • [34] Weber R., Schaffel-Mancini N., Mancini M., Kupka T.: Fly ash deposition modelling: requirements for accurate predictions of particle impaction on tubes using RANS-based computational fluid dynamics. Fuel 108(2013), 586–596.
  • [35] Badur J., Ziółkowski P., Sławiński D., Kornet S.: An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 92 (2015), 142–152.
  • [36] Ziółkowski P., Stajnke M., Jóźwik P., Bojar Z., Ziółkowski P.J., Badur J.: Analysis of species diffusion and methanol decomposition source in thermocatalytic reactor based on the intermetallic phase of Ni3Al for low Reynolds numbers. m J. Physics: Conf. Ser. 1101 (2018), 012050.
  • [37] Lemański M., Karcz M.: Performance of lignite-syngas operated tubular solid oxide fuel cell. Chem. Process Eng. 29(2008), 233–48.
  • [38] Ziółkowski P., Hernet J., Badur J.: Revalorization of the Szewalski binary vapour cycle. Arch. Thermodyn. 35(2014), 3, 225–249.
  • [39] Tesch K., Collins M., Karayiannis T., Atherton M., Edwards P.: Modelling of two-component turbulent mass and heat transfer in air-fed pressurised suits. Flow Turbul. Combust. 87(2011), 55–77.
  • [40] Ochrymiuk T.: Numerical analysis of microholes film/effusion cooling effectiveness. J. Therm. Sci. 26(2017), 5, 459–464.
  • [41] Stajnke M., Badur J.: Catalytic utilization of unconventional fuels in a gas turbine. J. Phys. Conf. Ser. 1101(2018), 012038.
  • [42] Sanz O., Velasco I., Reyero I., Legorburu I., Arzamendi G., Gandia L., Montes M.: Effect of the thermal conductivity of metallic monoliths on methanol steam reforming. Catalysis Today 273 (2016), 131–139.
  • [43] Meng Q.B., Gu Z.Z., Sato O., Fujishima A.: Fabrication of highly ordered porous structures. Appl. Phys. Lett. 77(2000), 26, 4313–4315. https://doi.org/10.1063/1.1332109
  • [44] Nandiyanto A.B.D., Hagura N., Iskandar F., Okuyama K.: Design of a highly ordered and uniform porous structure with multisized pores in film and particle forms using a template-driven self-assembly technique. Acta Materialia 58(2010), 282–289.
  • [45] Madejski P., Krakowska P., Habrat M., Puskarczyk E., Je¸drychowski M.: Comprehensive approach for porous materials analysis using a dedicated preprocessing tool for mass and heat transfer modeling. J. Therm. Sci. 27(2018), 5, 479-486.
  • [46] Vafai K., Tien C.L.: Boundary and inertial effects on flow and heat transfer in porous media. Int. J.Heat Mass Tran. 24(1981), 195–203.
  • [47] Krakowska P., Puskarczyk E., Je¸drychowski M., Habrat M., Madejski P., Dohnalik M.: Innovative characterization of tight sandstones from Paleozoic basins in Poland using X-ray computed tomography supported by nuclear magnetic resonance and mercury porosimetry. J. Petrol. Sci. Eng. 166(2018), 389–405.
  • [48] Puskarczyk E., Krakowska P., Je¸drychowski M., Habrat M., Madejski P.: A novel approach to the quantitative interpretation of petrophysical parameters using nano CT: Example of Paleozoic carbonates. Acta Geophysica 66(2018),1453–1461.
  • [49] Ziółkowski P.: Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. In: AIP Conf. Proc. 2077(2019), 020065. https://doi.org/10.1063/1.5091926
  • [50] Moghaddam R. N., Jamiolahmady M.: Slip flow in porous media. Fuel 173(2016), 298–310.
  • [51] Hooman K.: Heat and fluid flow in a rectangular microchannel filled with a porous medium. Int. J. Heat Mass Tran. 51(2008), 5804–5810.
  • [52] Vignoles G.L., Charrier P., Preux C., Dubroca B.: Rarefied pure gas transport in non-isothermal porous media: effective transport properties from homogenization of the kinetic equation. Transport Porous Med. 73(2008), 211–232.
  • [53] Sobieski W., Dudda W.: Sensitivity analysis as a tool for estimating numerical modeling results. Dry. Technol. 32(2014), 2, 145–155.
  • [54] Cieszko M., Kempiński M., Czerwiński T.: Limit models of pore space structure of porous materials for determination of limit pore size distributions based on mercury intrusion data. Transport Porous Med. 127(2019), 433–458.
  • [55] Cieszko M.: Macroscopic description of capillary transport of liquid and gas in unsaturated porous materials. Meccanica 51(2016), 10, 2331–2352, DOI 10.1007/s11012-016-0368-4.
Uwagi
EN
The work results were obtained in studies co-financed by the National Research and Development Centre in the project PBS 3 ID 246201 titled: ‘The development of innovative technology, thin foils of alloys based on intermetallic phase Ni3Al with high activity thermocatalytic in the field of purification of air from harmful substances or controlled decomposition of hydrocarbons’.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-267a6184-06a9-4204-9141-8345da539b26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.