PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A comprehensive study: intracranial aneurysm detection via VGG16-Densenet hybrid deep learning on DSA images

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kompleksowe badanie: wykrywanie tętniaka wewnątrzczaszkowego za pomocą hybrydowego głębokiego uczenia się VGG16-Densenetna obrazach DSA
Języki publikacji
EN
Abstrakty
EN
An intracranial aneurysm is a swelling in a weak area of a brain artery. The main cause of aneurysm is high blood pressure, smoking, and head injury. A ruptured aneurysm is a serious medical emergency that can lead to coma and then death. A digital subtraction angiogram (DSA) is used to detect a brain aneurysm. A neurosurgeon carefully examines the scan to find the exact location of the aneurysm. A hybrid model has been proposed to detect these aneurysms accurately and quickly. Visual Geometry Group 16 (VGG16) and DenseNet are two deep-learning architectures used for image classification. Ensembling both models opens the possibility of using diversity in a robust and stable feature extraction. The model results assist in identifying the location of aneurysms, which are much less prone to false positives or false negatives. This integration of a deep learning-based architecture into medical practice holds great promise for the timely and accurate detection of aneurysms. The study encompasses 1654 DSA images from distinct patients, partitioned into 70% for training (1157 images) and 30% for testing (496 images). The ensembled model manifests an impressive accuracy of 95.38%, outperforming the respective accuracies of VGG16 (94.38%) and DenseNet (93.57%). Additionally, the ensembled model achieves a recall value of 0.8657, indicating its ability to correctly identify approximately 86.57% of true aneurysm cases out of all actual positive cases present in the dataset. Furthermore, when considering DenseNet individually, it attains a recall value of 0.8209, while VGG16 attains a recall value of 0.8642. These values demonstrate the sensitivity of each model to detecting aneurysms, with the ensemble model showcasing superior performance compared to its individual components.
PL
Tętniak wewnątrzczaszkowy to obrzęk w słabym obszarze tętnicy mózgowej. Główną przyczyną tętniaka jest wysokie ciśnienie krwi, palenie tytoniu i uraz głowy. Pęknięcie tętniaka jest poważnym stanem nagłym, który może prowadzić do śpiączki, a następnie śmierci. W celu wykrycia tętniaka mózgu stosuje się cyfrową angiografię subtrakcyjną (DSA). Neurochirurg dokładnie bada skan, aby znaleźć dokładną lokalizację tętniaka. Zaproponowano model hybrydowy do dokładnego i szybkiego wykrywania tych tętniaków. Visual Geometry Group 16 (VGG16) i DenseNet to dwie architektury głębokiego uczenia wykorzystywane do klasyfikacji obrazów. Połączenie obu modeli otwiera możliwość wykorzystania różnorodności w solidnej i stabilnej ekstrakcji cech. Wyniki modelu pomagają w identyfikacji lokalizacji tętniaków, które są znacznie mniej podatne na fałszywie dodatnie lub fałszywie ujemne. Ta integracja architektury opartej na głębokim uczeniu się z praktyką medyczną jest bardzo obiecująca dla szybkiego i dokładnego wykrywania tętniaków. Badanie obejmuje 1654 obrazów DSA od różnych pacjentów, podzielonych na 70% do treningu (1157 obrazów) i 30% do testowania (496 obrazów). Złożony model wykazuje imponującą dokładność 95,38%, przewyższając odpowiednie dokładności VGG16 (94,38%) i DenseNet (93,57%). Dodatkowo, złożony model osiąga wartość pełności 0,8657, co wskazuje na jego zdolność do prawidłowej identyfikacji około 86,57% prawdziwych przypadków tętniaka spośród wszystkich rzeczywistych pozytywnych przypadków obecnych w zbiorze danych. Ponadto, biorąc pod uwagę DenseNet indywidualnie, osiąga on wartość pełności 0,8209, podczas gdy VGG16 osiąga wartość pełności 0,8642. Wartości te pokazują czułość każdego modelu w wykrywaniu tętniaków, przy czym model zespołowy wykazuje lepszą wydajność w porównaniu z jego poszczególnymi komponentami.
Rocznik
Strony
105--110
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
Bibliografia
  • [1] Ahmed F. et al.: Identification and Prediction of Brain Tumor Using VGG-16 Empowered with Explainable Artificial Intelligence. International Journal of Computational and Innovative Sciences 2(2), 2023, 24–33.
  • [2] Ahn J. H. et al.: Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms. Journal of Personalized Medicine 11(4), 2021, 239.
  • [3] Al Okashi O. M. et al.: An ensemble learning approach for automatic brain hemorrhage detection from MRIs. 12th International Conference on Developments in eSystems Engineering – DeSE, IEEE, 2019.
  • [4] Belaid O. N., Loudini M.: Classification of brain tumor by combination of pre-trained VGG16 CNN. Journal of Information Technology Management 12(2), 2020, 13–25.
  • [5] Chellapandi B., Vijayalakshmi M., Chopra S.: Comparison of pre-trained models using transfer learning for detecting plant disease. International Conference on Computing, Communication, and Intelligent Systems – ICCCIS, IEEE, 2021.
  • [6] Chen G. et al.: Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network. BioMedical Engineering OnLine 19(1), 2020, 1–10.
  • [7] Duan H. et al.: Automatic detection on intracranial aneurysm from digital subtraction angiography with cascade convolutional neural networks. Biomedical Engineering Online 18, 2019, 1–18.
  • [8] Ghaleb Al-Mekhlafi Z. et al.: Hybrid Techniques for Diagnosing Endoscopy Images for Early Detection of Gastrointestinal Disease Based on Fusion Features. International Journal of Intelligent Systems 2023, 8616939.
  • [9] Ghosh S., Chaki A., Santosh K. C.: Improved U-Net architecture with VGG-16 for brain tumor segmentation. Physical and Engineering Sciences in Medicine 44(3), 2021, 703–712.
  • [10] Gurunathan A., Krishnan B.: Detection and diagnosis of brain tumors using deep learning convolutional neural networks. International Journal of Imaging Systems and Technology 31(3), 2021, 1174–1184.
  • [11] Hossain T. et al.: Brain tumor detection using convolutional neural network. 1st international conference on advances in science, engineering and robotics technology – ICASERT, IEEE, 2019, 1–6.
  • [12] Kim H. C. et al.: Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. Journal of Clinical Medicine 8(5), 2019, 683.
  • [13] Liu W., Yu L., Luo J.: A hybrid attention-enhanced DenseNet neural network model based on improved U-Net for rice leaf disease identification. Frontiers in Plant Science 13, 2022, 922809.
  • [14] Liu X. et al.: Deep neural network-based detection and segmentation of intracranial aneurysms on 3D rotational DSA. Interventional Neuroradiology 27(5), 2021, 648–657.
  • [15] Minarno A. E. et al.: Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine. JOIV: International Journal on Informatics Visualization 6(2), 2022, 404–410.
  • [16] Mujahid M. et al.: An Efficient Ensemble Approach for Alzheimer’s Disease Detection Using an Adaptive Synthetic Technique and Deep Learning. Diagnostics 13(15), 2023, 2489.
  • [17] Nakao T. et al.: Deep neural network‐based computer‐assisted detection of cerebral aneurysms in MR angiography. Journal of Magnetic Resonance Imaging 47(4), 2018, 948–953.
  • [18] Ofori M.: Transfer-Learned Pruned Deep Convolutional Neural Networks for Efficient Plant Classification in Resource-Constrained Environments. Masters Theses & Doctoral Dissertations 371, 2021.
  • [19] Shahzad R. et al.: Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning. Scientific Reports 10(1), 2020, 21799.
  • [20] Stember J. N. et al.: Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. Journal of Digital Imaging 32, 2019, 808–815.
  • [21] Ueda D. et al.: Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology 290(1), 2019, 187–194.
  • [22] Yuan W. et al.: DCAU-Net: Dense convolutional attention U-Net for segmentation of intracranial aneurysm images. Visual Computing for Industry, Biomedicine, and Art 5(1), 2022, 1–18.
  • [23] Zeng Y. et al.: Automatic diagnosis based on spatial information fusion feature for intracranial aneurysm. IEEE Transactions on Medical Imaging 39(5), 2019, 1448–1458.
  • [24] Zhou Y. et al.: Holistic brain tumor screening and classification based on DenseNet and recurrent neural network. Crimi A., Bakas S., Kuijf H., Keyvan F., Reyes M., van Walsum T. (eds): Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science 11383. Springer, Cham [https://doi.org/10.1007/978-3 030-11723-8_21].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26791663-0c9c-4788-a97f-7bc786b153d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.