Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results presented here concern the anaerobic oxidation of methane (CH4) coupled with denitrification (i.e. a process abbreviated to DAMO) in the freshwater sediments of dam reservoirs located in Rzeszów, Maziarnia and Nielisz, SE Poland. The DAMO rate was determined experimentally by adding a 13CH4 isotope marker and NO3as an electron acceptor. The sediments were collected once, in autumn (September), with incubation of the 0–5, 5–10 and 10–15 cm layers then carried out at 10°C, as the temperature corresponding to the in situ conditions at the given time of the year. The DAMO rates were set against the results for the anaerobic oxidation of methane (AOM), which were obtained by incubation of reservoir sediments with the 13CH4 isotope marker alone. The DAMO rates noted were of 0.03–0.69 nmol∙g-1∙h-1 for Rzeszów Reservoir; 0.04–0.47 nmol∙g-1∙h-1 for Maziarnia Reservoir and 0.19–1.04 nmol∙g-1∙h-1 for Nielisz Reservoir. Overall, it was typical for the DAMO rates to be about twice as high as the rates of AOM with no electron acceptor added. The addition of NO3did not accelerate the methane oxidation significantly in any of the sediment layers from Maziarnia Reservoir, while the effects in Rzeszów Reservoir sediments were confined to the 10–15 cm layer. While the DAMO rates were progressively higher in the deeper layers of sediment from Maziarnia Reservoir, the trend was the reverse (downward) with depth at the Rzeszów and Nielisz sites. The results indicate that the process abbreviated as DAMO takes place in dam reservoirs and is related, not only to the presence of NO3-, but also to the sediment parameters.
Czasopismo
Rocznik
Tom
Strony
218--227
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- 1. Bartoszek L. 2019. Degradacja zbiorników wodnych małej retencji – uwarunkowania, nasilenie, możliwości chemicznej rekultywacji. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów.
- 2. Bhattacharjee A.S., Motlagh A.M., Jetten M.S., Goel R. 2016. Methane dependent denitrificationfrom ecosystem to laboratory-scale enrichment for engineering applications. Water Res. 99, 244–252.
- 3. Broman E. 2013. Observation of methanogenesis and potential iron-dependent anaerobic oxidation of methane in old lake sediments, a study of two boreal forest lakes.
- 4. Chen J., Zhou Z.C., Gu J.D. 2014. Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl. Microbiol. Biotechnol. 98 (12), 5685–5696.
- 5. Deutzmann J.S., Stief P., Brandes J., Schink B. 2014. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. PNAS, 111 (51), 18273–18278.
- 6. Fan L., Shahbaz M., Ge T., Wu J., Dippold M., Thiel V., Kuzyakov Y., Dorodnikov M. 2019. To shake or not to shake: 13C-based evidence on anaerobic methane oxidation in paddy soil. Soil Biology and Biochemistry, 133, 146–154.
- 7. Griffith S.M., Schnitzer M. 1975. Analytical characteristics of humic and fiilvic acids extracted from tropical volcanic soils. Soil Sei. Soc. Am. Proc., 39: 861–867.
- 8. Gruca-Rokosz R. 2015. Dynamika węglowych gazów cieplarnianych w zbiornikach zaporowych – mechanizmy produkcji, emisja do atmosfery. Oficyna Wydawnicza Politechniki Rzeszowskiej, 1–132.
- 9. Gupta V. 2011. Anaerobic Oxidation of Methane in Northern Peatland, Department of Geography University of Toronto.
- 10. Gupta V., Smemo K.A., Yavitt J., Fowle D.A., Branfireun B.A., Basiliko N. 2013. Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environ Sci Technol 47: 8273–8279.
- 11. Holmer M., Wildish D., Hargrave B. 2005. Organic Enrichment from Marine Finfish Aquaculture and Effects on Sediment Biogeochemical Processes. Hdb. Env. Chem., 5: 181–206, DOI 10.1007/b136010.
- 12. Hu B.L., Shen L.D., Lian X., Zhu Q., Liu S., Huang Q., He Z.F., Geng S., Cheng D.Q., Lou L.P., Xu Z.Y., Zheng P., He Y.F. 2014. Evidence for nitritedependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. PANS 111(12), 4495–4500.
- 13. Islas-Lima S., Thalasso F., Gómez-Hernandez J. 2004. Evidence of anoxic methane oxidation coupled to denitrification. Water Research, 38(1), 13–16.
- 14. Jiang L., Hu Z., Wang Y., Ru D., Li J., Fan J. 2018. Effect of trace elements on the development of co-cultured nitrite-dependent anaerobic methane oxidation and methanogenic bacteria consortium. Bioresource Technology, 268, 190–196.
- 15. Knittel K., Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol., 63, 311–334.
- 16. Koszelnik, P., Tomaszek, J.A. 2002. Loading of the Rzeszów reservoir with biogenic elements – mass balance. Environment Protection Engineering. 28(1), 99–106.
- 17. Li W., Lu P., Chai F., Zhang L., Han X., Zhang D. 2018. Long-term nitrate removal through methanedependent denitrification microorganisms in sequencing batch reactors fed with only nitrate and methane. AMB Express, 8(1):108.
- 18. Ma R., Hu Z., Zhang J., Ma H., Jiang L., Ru D. 2017. Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process. Bioresource Technology, 235, 211–218.
- 19. Norði K., Thamdrup B. 2014. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim. Cosmochim. Acta, 132, 141–150.
- 20. Ostrowska A. Gawliński S., Szczubiałka Z. 1991. Metody analizy i oceny właściwości gleb i roślin. Instytut Ochrony Środowiska, Warszawa.
- 21. Raghoebarsing A.A., Pol A., van de Pas-Schoonen K.T., Smolders A.J., Ettwig K.F., Rijpstra W.I., Schouten S., Damsté J.S., Op den Camp H.J., Jetten M.S., Strous M. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921.
- 22. Shi Y. et al. 2017. Using 13C isotopes to explore denitrification-dependent anaerobic methane oxidation in a paddy-peatland. Sci. Rep. 7, 40848, doi:10.1038/srep40848.
- 23. Viollier E., Inglett P.W., Hunter K., Roychoudhury A.N., Van Cappellen P. 2000. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters, Applied Geochemistry 15, 785–790.
- 24. Yu H., Kashima H., Regan J. M., Hussain A., Elbeshbishy E., Lee H.-S. 2017. Kinetic study on anaerobic oxidation of methane coupled to denitrification. Enzyme and Microbial Technology, 104, 47–55.
- 25. Zimmermann C.F., Keefe C. W., Bashe J. 1997. Determination of carbon and nitrogen in sediments and particulates/coastal waters using elemental analysis. Method 440.0. NER Laboratory, USEPA, Cincinnati, Ohio, http://www.epa.gov/nerlcwww/m440_0.pdf.
- 26. Zhu G.B., Zhou L.L., Wang Y., Wang S.Y., Guo J.H., Long X.E., Sun X.B., Jiang B., Hou Q.Y., Jetten M.S.M., Yin C.Q. 2015. Biogeographical distribution of deni-trifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environ. Microbiol. Rep. 7, 128–138.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26787e92-55b6-48df-abda-3e796026c9af