Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To obtain high reliability and accuracy of the zenith tropospheric delay more quickly, this study describes a parameter estimation method that uses an epoch-differenced and undifferenced function model to estimate the clock of the BeiDou navigation satellite system (BDS)/global positioning system (GPS) satellites using a quasi-real-time process. Forty-five MGEX tracking stations distributed globally were selected for study. The initial orbit information of the clock estimation used the ultra-rapid orbit products released by the German Research Center for Geosciences and post-products as reference values. The experimental results showed that the accuracy of the GPS satellite clock was better than 0.06 ns. The precision of clock for three kinds of BDS satellites was between 0.04 and 0.08 ns, slightly worse than the GPS. The estimated BDS clock appears to meet the demands for computing the quasi-real-time zenith tropospheric delay.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1131--1138
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- School of Geomatics and Marine Information, Huaihai Institute of Technology, Lianyungang 222001, Jiangsu Province, China
autor
- School of Geomatics and Marine Information, Huaihai Institute of Technology, Lianyungang 222001, Jiangsu Province, China
autor
- School of Mapping and Geographical Science, Liaoning Technical University, Fuxin 123000, Liaoning Province, China
Bibliografia
- 1. Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202
- 2. Gao Y, Lahaye F, Héroux P et al (2001) Modeling and estimation of C1–P1 bias in GPS receivers. J Geodesy 74(9):621–626
- 3. Ge M, Chen J, Gendt G (2009) EPOS-RT: software for real-time GNSS data processing. In: EGU General Assembly Conference, EGU General Assembly Conference Abstracts, EGU2009-8933
- 4. Ge M, Chen J, Douša J et al (2012) A computationally efficient approach for estimating high-rate satellite clock corrections in real-time. GPS Solut 16(1):9–17
- 5. Li X (2013) Rapid ambiguity resolution in GNSS precise point positioning, Wuhan University
- 6. Li H, Wang J, Wang H et al (2010) Precise clock estimation of GPS satellite and analysis based on GNSS network. Geomat Inf Sci Wuhan Univ 35(8):1001–1003
- 7. Li L, Lin K, Zhu J et al (2011) Real-time estimation of precise satellites clock bias based on IGU predicted orbit. J Geodesy Geodyn 31(2):111–116
- 8. Li X, Dick G, Ge M et al (2014) Real-time GPS sensing of atmospheric water vapor: precise point positioning with orbit, clock, and phase delay corrections. Geophys Res Lett 41(10):3615–3621
- 9. Uhlemann M, Gendt G, Ramatschi M et al (2015) GFZ global multi-GNSS network and data processing results. In: Rizos C, Willis P (eds) IAG 150 years. International association of geodesy symposia, vol 143. Springer, Cham
- 10. Wang G, Liu L, Xu A et al (2014) The application of radial basis function neural network in the GPS satellite clock bias prediction. Acta Geodaetica Cartogr Sin 43(8):803–807
- 11. Zhang X, Li XX, Guo F (2011) Satellite clock estimation at 1 Hz for real-time kinematic PPP applications. GPS Solut 15(4):315–324
- 12. Zhao Q, Dai Z, Wang G et al (2016) Real-time precise BDS clock estimation with the undifferenced observation. Geomat Inf Sci Wuhan Univ 41(5):686–691
- 13. Zhong B, Wu Y (2012) Estimation and application of near real-time satellite clock bias based on regional CORS network. J Geodesy Geodyn 32(4):57–60
- 14. Zhu X, Xiao H, Yong S et al (2008) The Kalman algorithm used for satellite clock offset prediction and its performance analysis. J Astronaut 29(3):966–970
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-267847c6-48fd-416f-84ac-7f801866ffa0