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1. INTRODUCTION

In this paper, we are concerned with the asymptotic behavior of nonoscillatory solu-
tions of the higher-order integro-dynamic equation on time scales

x∆n

(t) +

t∫
0

a(t, s)F (s, x(s))∆s = 0. (1.1)

We take T ⊆ R to be an arbitrary time scale with 0 ∈ T and supT = ∞. Whenever
we write t ≥ s, we mean t ∈ [s,∞) ∩ T. We assume throughout that:

(H1) a : T× T→ R is rd-continuous such that a(t, s) ≥ 0 for t > s and

sup
t≥T

T∫
0

a(t, s)∆s =: kT <∞ for all T ≥ 0; (1.2)

(H2) F :T×R→R is continuous and there exist continuous functions f1, f2 :T×R→R,
such that F (t, x) = f1(t, x)− f2(t, x) for t ≥ 0;
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(H3) there exist constants β and γ of ratios of positive odd integers and pi ∈
Crd(T, (0,∞)), i ∈ {1, 2}, such that

f1(t, x) ≥ p1(t)xβ and f2(t, x) ≤ p2(t)xγ for x > 0 and t ≥ 0,

f1(t, x) ≤ p1(t)xβ and f2(t, x) ≥ p2(t)xγ for x < 0 and t ≥ 0.

We only consider those solutions of equation (1.1) which are nontrivial and differen-
tiable on [0,∞). The term solution henceforth applies to such solutions of equation
(1.1). A solution x of equation (1.1) is said to be oscillatory if for every t0 > 0, we
have inft≥t0 x(t) < 0 < supt≥t0 x(t) and nonoscillatory otherwise. Dynamic equations
on time scales are fairly new objects of study and for the general basic ideas and
background, we refer to [1, 2].

Oscillation results for integral equations of Volterra type are scant and only a few
references exist on this subject. Related studies can be found in [4, 6–8]. To the best
of our knowledge, there appear to be no such results on the asymptotic behavior of
nonoscillatory solutions of equations (1.1). Our aim here is to initiate such a study by
establishing some new criteria for the asymptotic behavior of nonoscillatory solutions
of equation (1.1) and some related equations.

2. AUXILIARY RESULTS

We shall employ the following auxiliary results.

Lemma 2.1 ([3]). If X,Y ≥ 0, then

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0 for λ > 1 (2.1)

and
Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0 for λ < 1, (2.2)

and equality holds if and only if X = Y .

Lemma 2.2 ([5, Corollary 1]). Assume that n ∈ N, s, t ∈ T, and f ∈ Crd(T,R).
Then

t∫
s

t∫
ηn

· · ·
t∫

η2

f(η1)∆η1∆η2 · · ·∆ηn = (−1)n−1

t∫
s

hn−1(s, σ(η))f(η)∆η.

Remark 2.1. Under the conditions of Lemma 2.2, we may reverse all occurring
integrals to obtain

s∫
t

ηn∫
t

· · ·
η2∫
t

f(η1)∆η1∆η2 · · ·∆ηn =

s∫
t

hn−1(s, σ(η))f(η)∆η
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and then replace t by t0 and s by t to arrive at

t∫
t0

ηn∫
t0

· · ·
η2∫
t0

f(η1)∆η1∆η2 · · ·∆ηn =

t∫
t0

hn−1(t, σ(η))f(η)∆η, (2.3)

which is the formula that will be needed in the proofs of our main results in Section 3
below.

In Lemma 2.2 above, the hn stand for the Taylor monomials (see [1, Section 1.6])
which are defined recursively by

h0(t, s) = 1, hn+1(t, s) =

t∫
s

hn(τ, s)∆τ for t, s ∈ T and n ∈ N.

It follows that h1(t, s) = t− s for any time scale, but simple formulas, in general, do
not hold for n ≥ 2. We define

Hn(t) = h0(t, 0) + h1(t, 0) + . . .+ hn(t, 0). (2.4)

Remark 2.2. Note that the properties of the Taylor monomials imply that

h0(t, t0) + h1(t, t0) + . . .+ hn(t, t0) ≤ Hn(t) for all t0 ≥ 0. (2.5)

3. MAIN RESULTS

In this section, we give the following main results.

Theorem 3.1. Let conditions (H1)–(H3) hold with β > 1, γ = 1 and suppose

lim
t→∞

1

Hn(t)

t∫
t0

hn−1(t, σ(u))

u∫
t0

a(u, s)p
1

1−β
1 (s)p

β
β−1

2 (s)∆s∆u <∞ (3.1)

for all t0 ≥ 0. If x is a nonoscillatory solution of equation (1.1), then

x(t) = O (Hn(t)) as t→∞. (3.2)

Proof. Let x be a nonoscillatory solution of equation (1.1). Hence x is either eventually
positive or x is eventually negative.

First assume x is eventually positive, say x(t) > 0 for t ≥ t0 for some t0 ≥ 0.
Using conditions (H2) and (H3) with β > 1 and γ = 1 in equation (1.1), we have

x∆n

(t) ≤
t∫

t0

a(t, s)
[
p2(s)x(s)− p1(s)xβ(s)

]
∆s−

t0∫
0

a(t, s)F (s, x(s))∆s (3.3)



8 Martin Bohner, Said Grace, and Nasrin Sultana

for t ≥ t0. Let
m := max

0≤t≤t0
|F (t, x(t))| <∞.

By assumption (H1), we have∣∣∣∣∣∣−
t0∫

0

a(t, s)F (s, x(s))∆s

∣∣∣∣∣∣ ≤
t0∫

0

a(t, s)|F (s, x(s))|∆s ≤

≤ m
t0∫

0

a(t, s)∆s ≤ mkT =: b

for all t ≥ t0. Hence from (3.3), we get

x∆n

(t) ≤
t∫

t0

a(t, s)
[
p2(s)x(s)− p1(s)xβ(s)

]
∆s+ b for t ≥ t0. (3.4)

By applying (2.1) with

λ = β, X = p
1
β

1 (t)x(t), Y =

(
1

β
p2(t)p

− 1
β

1 (t)

) 1
β−1

,

we obtain

p2(t)x(t)− p1(t)xβ(t) ≤ (β − 1)β
β

1−β p
1

1−β
1 (t)p

β
β−1

2 (t) for t ≥ t0. (3.5)

Using (3.5) in (3.4), we find

x∆n

(t) ≤ A(t) + b for t ≥ t0, (3.6)

where

A(t) = (β − 1)β
β

1−β

t∫
t0

a(t, s)p
1

1−β
1 (s)p

β
β−1

2 (s)∆s.

Integrating (3.6) n times from t0 to t and then using (2.3), we obtain

x(t) ≤
t∫

t0

ξn∫
t0

· · ·
ξ2∫
t0

A(ξ1)∆ξ1 · · ·∆ξn + bhn(t, t0) +

n−1∑
k=0

x∆k

(t0)hk(t, t0) =

=

t∫
t0

hn−1(t, σ(u))A(u)∆u+ bhn(t, t0) +

n−1∑
k=0

x∆k

(t0)hk(t, t0).

(3.7)

From (3.7), using (2.5), we get

|x(t)| ≤
t∫

t0

hn−1(t, σ(u))A(u)∆u+ cHn(t), (3.8)
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where

c := max

{
b, max

0≤k≤n−1

∣∣∣x∆k

(t0)
∣∣∣} .

Dividing (3.8) by Hn(t) and using (3.1) shows that (3.2) is valid.
Now assume x is eventually negative, say x(t) < 0 for t ≥ t0 for some t0 ≥ 0.

Using conditions (H2) and (H3) with β > 1 and γ = 1 in equation (1.1), we now have

x∆n

(t) ≥
t∫

t0

a(t, s)
[
p2(s)x(s)− p1(s)xβ(s)

]
∆s−

t0∫
0

a(t, s)F (s, x(s))∆s (3.9)

for t ≥ t0. With m defined as before and by assumption (H1), we have∣∣∣∣∣∣
t0∫

0

a(t, s)F (s, x(s))∆s

∣∣∣∣∣∣ ≤
t0∫

0

a(t, s)|F (s, x(s))|∆s ≤ m
t0∫

0

a(t, s)∆s ≤ mkT =: b

for all t ≥ t0. Hence from (3.9), we get

x∆n

(t) ≥
t∫

t0

a(t, s)
[
p2(s)x(s)− p1(s)xβ(s)

]
∆s− b for t ≥ t0. (3.10)

By applying (2.1) with

λ = β, X = −p
1
β

1 (t)x(t), Y =

(
1

β
p2(t)p

− 1
β

1 (t)

) 1
β−1

,

we obtain

p2(t)x(t)− p1(t)xβ(t) ≥ −(β − 1)β
β

1−β p
1

1−β
1 (t)p

β
β−1

2 (t) for t ≥ t0. (3.11)

Using (3.11) in (3.10), we find

x∆n

(t) ≥ −A(t)− b for t ≥ t0, (3.12)

where A is defined as before. Integrating (3.12) n times from t0 to t and then using
(2.3), we obtain

x(t) ≥ −
t∫

t0

ξn∫
t0

· · ·
ξ2∫
t0

A(ξ1)∆ξ1 · · ·∆ξn − bhn(t, t0)−
n−1∑
k=0

x∆k

(t0)hk(t, t0) =

= −

 t∫
t0

hn−1(t, σ(u))A(u)∆u+ bhn(t, t0) +

n−1∑
k=0

x∆k

(t0)hk(t, t0)

 .

(3.13)
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From (2.5), we get

x(t) ≥ −

 t∫
t0

hn−1(t, σ(u))A(u)∆u+ cHn(t)

 ,
where c is defined as before. This implies (3.8), and thus (3.2) follows as before.

Theorem 3.2. Let conditions (H1)–(H3) hold with β = 1, γ < 1 and suppose

lim
t→∞

1

Hn(t)

t∫
t0

hn−1(t, σ(u))

u∫
t0

a(u, s)p
γ
γ−1

1 (s)p
1

1−γ
2 (s)∆s∆u <∞ (3.14)

for all t0 ≥ 0. If x is a nonoscillatory solution of equation (1.1), then (3.2) holds.

Proof. Let x be a nonoscillatory solution of equation (1.1). First assume x is eventually
positive, say x(t) > 0 for t ≥ t0 for some t0 ≥ 0. Using conditions (H2) and (H3) with
β = 1 and γ < 1 in equation (1.1), we have

x∆n

(t) ≤
t∫

t0

a(t, s) [p2(s)xγ(s)− p1(s)x(s)] ∆s−
t0∫

0

a(t, s)F (s, x(s))∆s

for t ≥ t0. Hence

x∆n

(t) ≤
t∫

t0

a(t, s) [p2(s)xγ(s)− p1(s)x(s)] ∆s+ b for t ≥ t0, (3.15)

where b is defined as in the proof of Theorem 3.1. By applying (2.2) with

λ = γ, X = p
1
γ

2 (t)x(t), Y =

(
1

γ
p1(t)p

− 1
γ

2 (t)

) 1
γ−1

,

we obtain

p2(t)xγ(t)− p1(t)x(t) ≤ (1− γ)γ
γ

1−γ p
γ
γ−1

1 (t)p
1

1−γ
2 (t) for t ≥ t0. (3.16)

Using (3.16) in (3.15), we find

x∆n

(t) ≤ (1− γ)γ
γ

1−γ

t∫
t0

a(t, s)p
γ
γ−1

1 (s)p
1

1−γ
2 (s)∆s+ b.

The rest of the proof is similar to the proof of Theorem 3.1 and hence is omitted.

Finally, we present the following result with different nonlinearities, i.e., with β > 1
and γ < 1.
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Theorem 3.3. Let conditions (H1)–(H3) hold with β > 1, γ < 1 and suppose that
there exists a positive rd-continuous function ξ : T→ R such that

lim
t→∞

1

Hn(t)

t∫
t0

hn−1(t, σ(u))

u∫
t0

a(u, s)

[
c1ξ

β
β−1 (s)p

1
1−β
1 (s) +

+ c2ξ
γ
γ−1 (s)p

1
1−γ
2 (s)

]
∆s∆u <∞ (3.17)

for all t0 ≥ 0, where c1 = (β − 1)β
β

1−β and c2 = (1− γ)γ
γ

1−γ . If x is a nonoscillatory
solution of equation (1.1), then (3.2) holds.

Proof. Let x be a nonoscillatory solution of equation (1.1). First assume x is eventually
positive, say x(t) > 0 for t ≥ t0 for some t0 ≥ 0. Using conditions (H2) and (H3) in
equation (1.1), we obtain

x∆n

(t) ≤
t∫

t0

a(t, s)
[
ξ(s)x(s)− p1(s)xβ(s)

]
∆s+

+

t∫
t0

a(t, s) [p2(s)xγ(s)− ξ(s)x(s)] ∆s−
t0∫

0

a(t, s)F (s, x(s))∆s for t ≥ t0.

(3.18)

As in the proofs of Theorems 3.1 and 3.2, one can easily find

x∆n

(t) ≤
t∫

t0

a(t, s)

[
(β − 1)β

β
1−β ξ

β
β−1 (s)p

1
1−β
1 (s) +

+ (1− γ)γ
γ

1−γ ξ
γ
γ−1 (s)p

1
1−γ
2 (s)

]
∆s+ b.

(3.19)

The rest of the proof is similar to the proof of Theorem 3.1 and hence is omitted.

4. REMARKS AND EXTENSIONS

We conclude by presenting several remarks and extensions of the results given in
Section 3.

Remark 4.1. The results presented in this paper are new for T = R and T = Z. Let
us therefore rewrite the crucial condition in Theorem 3.1 (this can be done similarly
for Theorem 3.2 and Theorem 3.3) for the two special time scales T = R and T = Z.
If T = R, then (1.1) becomes

x(n)(t) +

t∫
0

a(t, s)F (s, x(s))ds = 0
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and condition (3.1) turns into

lim
t→∞

1∑n
k=0

tk

k!

t∫
t0

(t− u)n−1

(n− 1)!

u∫
t0

a(u, s)p
1

1−β
1 (s)p

β
β−1

2 (s)dsdu <∞.

If T = Z, then (1.1) becomes

∆nx(t) +

t−1∑
s=0

a(t, s)F (s, x(s)) = 0

and condition (3.1) turns into

lim
t→∞

1∑n
k=0

tk

k!

t−1∑
u=t0

(t− u− 1)n−1

(n− 1)!

u−1∑
s=t0

a(u, s)p
1

1−β
1 (s)p

β
β−1

2 (s) <∞.

Remark 4.2. The results of this paper are presented in a form which is essentially
new for equation (1.1) with different nonlinearities.

Remark 4.3. The results of this paper will remain the same if we replace (1.2) of
assumption (H1) by

sup
0≤s≤T≤t

a(t, s) =: KT <∞ for all T ≥ 0,

since then (1.2) is satisfied with kT = TKT .

Remark 4.4. The results of this paper will remain the same if we replace (1.2)
of assumption (H1) by the assumption that there exist rd-continuous functions
α, β : T→ R+ such that a(t, s) < α(t)β(s) for all t ≥ s,

sup
t≥0

α(t) =: Kα <∞;

and

sup
t≥0

t∫
0

β(s)∆s =: Kβ <∞,

since then (1.2) is satisfied with kT = KαKβ .

Remark 4.5. If we skip (1.2) of assumption (H1) and pick t0 = 0 in Theorem 3.1,
Theorem 3.2 and Theorem 3.3, then the results of this paper will remain true for an
eventually positive and eventually negative solution.

Remark 4.6. The techniques described in this paper can be employed to Volterra
integral equations on time scales of the form

x(t) +

t∫
0

a(t, s)F (s, x(s))∆s = 0. (4.1)
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As an example illustrating Remark 4.5 and 4.6, we reformulate Theorem 3.1 as
follows.

Theorem 4.7. Let conditions (H1)–(H3) hold with β > 1, γ = 1 and assume
∞∫

0

a(t, s)p
β
β−1

2 (s)p
1

1−β
1 (s)∆s <∞.

Then any positive solution of equation (4.1) is bounded.

Remark 4.8. The results of this paper can be extended easily to delay
integro-dynamic equations of the form

x∆n

(t) +

t∫
0

a(t, s)F (s, x(g(s)))∆s = 0,

where g : T → T is rd-continuous such that g(t) ≤ t and g∆(t) ≥ 0 for t ≥ 0 and
limt→∞ g(t) =∞.

Remark 4.9. We note that we can reformulate the obtained results for the time
scales T = R (the continuous case), T = Z (the discrete case), T = qN0 with q > 1
(the quantum calculus case), T = hZ with h > 0, T = N2

0 etc.; see [1, 2].
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