ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF HIGHER-ORDER INTEGRO-DYNAMIC EQUATIONS

Martin Bohner, Said Grace, and Nasrin Sultana

Communicated by Alexander Domoshnitsky

Abstract

In this paper, we establish some new criteria on the asymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations on time scales.

Keywords: dynamic equations, time scales, nonoscillation, asymptotics.

Mathematics Subject Classification: 34N05, 39A10, 39A12, 39A21.

1. INTRODUCTION

In this paper, we are concerned with the asymptotic behavior of nonoscillatory solutions of the higher-order integro-dynamic equation on time scales

$$
\begin{equation*}
x^{\Delta^{n}}(t)+\int_{0}^{t} a(t, s) F(s, x(s)) \Delta s=0 \tag{1.1}
\end{equation*}
$$

We take $\mathbb{T} \subseteq \mathbb{R}$ to be an arbitrary time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Whenever we write $t \geq s$, we mean $t \in[s, \infty) \cap \mathbb{T}$. We assume throughout that:
$\left(\mathrm{H}_{1}\right) a: \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ is rd-continuous such that $a(t, s) \geq 0$ for $t>s$ and

$$
\begin{equation*}
\sup _{t \geq T} \int_{0}^{T} a(t, s) \Delta s=: k_{T}<\infty \quad \text { for all } \quad T \geq 0 \tag{1.2}
\end{equation*}
$$

$\left(\mathrm{H}_{2}\right) \quad F: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exist continuous functions $f_{1}, f_{2}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{R}$, such that $F(t, x)=f_{1}(t, x)-f_{2}(t, x)$ for $t \geq 0$;
$\left(\mathrm{H}_{3}\right)$ there exist constants β and γ of ratios of positive odd integers and $p_{i} \in$ $\mathrm{C}_{\mathrm{rd}}(\mathbb{T},(0, \infty)), i \in\{1,2\}$, such that

$$
\begin{array}{llll}
f_{1}(t, x) \geq p_{1}(t) x^{\beta} & \text { and } \quad f_{2}(t, x) \leq p_{2}(t) x^{\gamma} & \text { for } \quad x>0 \quad \text { and } \quad t \geq 0 \\
f_{1}(t, x) \leq p_{1}(t) x^{\beta} \quad \text { and } \quad f_{2}(t, x) \geq p_{2}(t) x^{\gamma} \quad \text { for } \quad x<0 \quad \text { and } \quad t \geq 0
\end{array}
$$

We only consider those solutions of equation (1.1) which are nontrivial and differentiable on $[0, \infty)$. The term solution henceforth applies to such solutions of equation (1.1). A solution x of equation (1.1) is said to be oscillatory if for every $t_{0}>0$, we have $\inf _{t \geq t_{0}} x(t)<0<\sup _{t \geq t_{0}} x(t)$ and nonoscillatory otherwise. Dynamic equations on time scales are fairly new objects of study and for the general basic ideas and background, we refer to $[1,2]$.

Oscillation results for integral equations of Volterra type are scant and only a few references exist on this subject. Related studies can be found in [4, 6-8]. To the best of our knowledge, there appear to be no such results on the asymptotic behavior of nonoscillatory solutions of equations (1.1). Our aim here is to initiate such a study by establishing some new criteria for the asymptotic behavior of nonoscillatory solutions of equation (1.1) and some related equations.

2. AUXILIARY RESULTS

We shall employ the following auxiliary results.
Lemma 2.1 ([3]). If $X, Y \geq 0$, then

$$
\begin{equation*}
X^{\lambda}+(\lambda-1) Y^{\lambda}-\lambda X Y^{\lambda-1} \geq 0 \quad \text { for } \quad \lambda>1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
X^{\lambda}-(1-\lambda) Y^{\lambda}-\lambda X Y^{\lambda-1} \leq 0 \quad \text { for } \quad \lambda<1 \tag{2.2}
\end{equation*}
$$

and equality holds if and only if $X=Y$.
Lemma 2.2 ([5, Corollary 1]). Assume that $n \in \mathbb{N}, s, t \in \mathbb{T}$, and $f \in \mathrm{C}_{\mathrm{rd}}(\mathbb{T}, \mathbb{R})$. Then

$$
\int_{s}^{t} \int_{\eta_{n}}^{t} \cdots \int_{\eta_{2}}^{t} f\left(\eta_{1}\right) \Delta \eta_{1} \Delta \eta_{2} \cdots \Delta \eta_{n}=(-1)^{n-1} \int_{s}^{t} h_{n-1}(s, \sigma(\eta)) f(\eta) \Delta \eta
$$

Remark 2.1. Under the conditions of Lemma 2.2, we may reverse all occurring integrals to obtain

$$
\int_{t}^{s} \int_{t}^{\eta_{n}} \cdots \int_{t}^{\eta_{2}} f\left(\eta_{1}\right) \Delta \eta_{1} \Delta \eta_{2} \cdots \Delta \eta_{n}=\int_{t}^{s} h_{n-1}(s, \sigma(\eta)) f(\eta) \Delta \eta
$$

and then replace t by t_{0} and s by t to arrive at

$$
\begin{equation*}
\int_{t_{0}}^{t} \int_{t_{0}}^{\eta_{n}} \cdots \int_{t_{0}}^{\eta_{2}} f\left(\eta_{1}\right) \Delta \eta_{1} \Delta \eta_{2} \cdots \Delta \eta_{n}=\int_{t_{0}}^{t} h_{n-1}(t, \sigma(\eta)) f(\eta) \Delta \eta \tag{2.3}
\end{equation*}
$$

which is the formula that will be needed in the proofs of our main results in Section 3 below.

In Lemma 2.2 above, the h_{n} stand for the Taylor monomials (see [1, Section 1.6]) which are defined recursively by

$$
h_{0}(t, s)=1, \quad h_{n+1}(t, s)=\int_{s}^{t} h_{n}(\tau, s) \Delta \tau \quad \text { for } \quad t, s \in \mathbb{T} \quad \text { and } \quad n \in \mathbb{N} .
$$

It follows that $h_{1}(t, s)=t-s$ for any time scale, but simple formulas, in general, do not hold for $n \geq 2$. We define

$$
\begin{equation*}
H_{n}(t)=h_{0}(t, 0)+h_{1}(t, 0)+\ldots+h_{n}(t, 0) . \tag{2.4}
\end{equation*}
$$

Remark 2.2. Note that the properties of the Taylor monomials imply that

$$
\begin{equation*}
h_{0}\left(t, t_{0}\right)+h_{1}\left(t, t_{0}\right)+\ldots+h_{n}\left(t, t_{0}\right) \leq H_{n}(t) \quad \text { for all } \quad t_{0} \geq 0 \tag{2.5}
\end{equation*}
$$

3. MAIN RESULTS

In this section, we give the following main results.
Theorem 3.1. Let conditions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold with $\beta>1, \gamma=1$ and suppose

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{H_{n}(t)} \int_{t_{0}}^{t} h_{n-1}(t, \sigma(u)) \int_{t_{0}}^{u} a(u, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s \Delta u<\infty \tag{3.1}
\end{equation*}
$$

for all $t_{0} \geq 0$. If x is a nonoscillatory solution of equation (1.1), then

$$
\begin{equation*}
x(t)=\mathrm{O}\left(H_{n}(t)\right) \quad \text { as } \quad t \rightarrow \infty \tag{3.2}
\end{equation*}
$$

Proof. Let x be a nonoscillatory solution of equation (1.1). Hence x is either eventually positive or x is eventually negative.

First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{0}$ for some $t_{0} \geq 0$. Using conditions $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ with $\beta>1$ and $\gamma=1$ in equation (1.1), we have

$$
\begin{equation*}
x^{\Delta^{n}}(t) \leq \int_{t_{0}}^{t} a(t, s)\left[p_{2}(s) x(s)-p_{1}(s) x^{\beta}(s)\right] \Delta s-\int_{0}^{t_{0}} a(t, s) F(s, x(s)) \Delta s \tag{3.3}
\end{equation*}
$$

for $t \geq t_{0}$. Let

$$
m:=\max _{0 \leq t \leq t_{0}}|F(t, x(t))|<\infty .
$$

By assumption $\left(\mathrm{H}_{1}\right)$, we have

$$
\begin{aligned}
\left|-\int_{0}^{t_{0}} a(t, s) F(s, x(s)) \Delta s\right| & \leq \int_{0}^{t_{0}} a(t, s)|F(s, x(s))| \Delta s \leq \\
& \leq m \int_{0}^{t_{0}} a(t, s) \Delta s \leq m k_{T}=: b
\end{aligned}
$$

for all $t \geq t_{0}$. Hence from (3.3), we get

$$
\begin{equation*}
x^{\Delta^{n}}(t) \leq \int_{t_{0}}^{t} a(t, s)\left[p_{2}(s) x(s)-p_{1}(s) x^{\beta}(s)\right] \Delta s+b \quad \text { for } \quad t \geq t_{0} \tag{3.4}
\end{equation*}
$$

By applying (2.1) with

$$
\lambda=\beta, \quad X=p_{1}^{\frac{1}{\beta}}(t) x(t), \quad Y=\left(\frac{1}{\beta} p_{2}(t) p_{1}^{-\frac{1}{\beta}}(t)\right)^{\frac{1}{\beta-1}}
$$

we obtain

$$
\begin{equation*}
p_{2}(t) x(t)-p_{1}(t) x^{\beta}(t) \leq(\beta-1) \beta^{\frac{\beta}{1-\beta}} p_{1}^{\frac{1}{1-\beta}}(t) p_{2}^{\frac{\beta}{\beta-1}}(t) \quad \text { for } \quad t \geq t_{0} . \tag{3.5}
\end{equation*}
$$

Using (3.5) in (3.4), we find

$$
\begin{equation*}
x^{\Delta^{n}}(t) \leq A(t)+b \quad \text { for } \quad t \geq t_{0} \tag{3.6}
\end{equation*}
$$

where

$$
A(t)=(\beta-1) \beta^{\frac{\beta}{1-\beta}} \int_{t_{0}}^{t} a(t, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s
$$

Integrating (3.6) n times from t_{0} to t and then using (2.3), we obtain

$$
\begin{align*}
x(t) & \leq \int_{t_{0}}^{t} \int_{t_{0}}^{\xi_{n}} \cdots \int_{t_{0}}^{\xi_{2}} A\left(\xi_{1}\right) \Delta \xi_{1} \cdots \Delta \xi_{n}+b h_{n}\left(t, t_{0}\right)+\sum_{k=0}^{n-1} x^{\Delta^{k}}\left(t_{0}\right) h_{k}\left(t, t_{0}\right)= \tag{3.7}\\
& =\int_{t_{0}}^{t} h_{n-1}(t, \sigma(u)) A(u) \Delta u+b h_{n}\left(t, t_{0}\right)+\sum_{k=0}^{n-1} x^{\Delta^{k}}\left(t_{0}\right) h_{k}\left(t, t_{0}\right) .
\end{align*}
$$

From (3.7), using (2.5), we get

$$
\begin{equation*}
|x(t)| \leq \int_{t_{0}}^{t} h_{n-1}(t, \sigma(u)) A(u) \Delta u+c H_{n}(t) \tag{3.8}
\end{equation*}
$$

where

$$
c:=\max \left\{b, \max _{0 \leq k \leq n-1}\left|x^{\Delta^{k}}\left(t_{0}\right)\right|\right\} .
$$

Dividing (3.8) by $H_{n}(t)$ and using (3.1) shows that (3.2) is valid.
Now assume x is eventually negative, say $x(t)<0$ for $t \geq t_{0}$ for some $t_{0} \geq 0$. Using conditions $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ with $\beta>1$ and $\gamma=1$ in equation (1.1), we now have

$$
\begin{equation*}
x^{\Delta^{n}}(t) \geq \int_{t_{0}}^{t} a(t, s)\left[p_{2}(s) x(s)-p_{1}(s) x^{\beta}(s)\right] \Delta s-\int_{0}^{t_{0}} a(t, s) F(s, x(s)) \Delta s \tag{3.9}
\end{equation*}
$$

for $t \geq t_{0}$. With m defined as before and by assumption $\left(\mathrm{H}_{1}\right)$, we have

$$
\left|\int_{0}^{t_{0}} a(t, s) F(s, x(s)) \Delta s\right| \leq \int_{0}^{t_{0}} a(t, s)|F(s, x(s))| \Delta s \leq m \int_{0}^{t_{0}} a(t, s) \Delta s \leq m k_{T}=: b
$$

for all $t \geq t_{0}$. Hence from (3.9), we get

$$
\begin{equation*}
x^{\Delta^{n}}(t) \geq \int_{t_{0}}^{t} a(t, s)\left[p_{2}(s) x(s)-p_{1}(s) x^{\beta}(s)\right] \Delta s-b \quad \text { for } \quad t \geq t_{0} \tag{3.10}
\end{equation*}
$$

By applying (2.1) with

$$
\lambda=\beta, \quad X=-p_{1}^{\frac{1}{\beta}}(t) x(t), \quad Y=\left(\frac{1}{\beta} p_{2}(t) p_{1}^{-\frac{1}{\beta}}(t)\right)^{\frac{1}{\beta-1}}
$$

we obtain

$$
\begin{equation*}
p_{2}(t) x(t)-p_{1}(t) x^{\beta}(t) \geq-(\beta-1) \beta^{\frac{\beta}{1-\beta}} p_{1}^{\frac{1}{1-\beta}}(t) p_{2}^{\frac{\beta}{\beta-1}}(t) \quad \text { for } \quad t \geq t_{0} \tag{3.11}
\end{equation*}
$$

Using (3.11) in (3.10), we find

$$
\begin{equation*}
x^{\Delta^{n}}(t) \geq-A(t)-b \quad \text { for } \quad t \geq t_{0} \tag{3.12}
\end{equation*}
$$

where A is defined as before. Integrating (3.12) n times from t_{0} to t and then using (2.3), we obtain

$$
\begin{align*}
x(t) & \geq-\int_{t_{0}}^{t} \int_{t_{0}}^{\xi_{n}} \cdots \int_{t_{0}}^{\xi_{2}} A\left(\xi_{1}\right) \Delta \xi_{1} \cdots \Delta \xi_{n}-b h_{n}\left(t, t_{0}\right)-\sum_{k=0}^{n-1} x^{\Delta^{k}}\left(t_{0}\right) h_{k}\left(t, t_{0}\right)= \\
& =-\left(\int_{t_{0}}^{t} h_{n-1}(t, \sigma(u)) A(u) \Delta u+b h_{n}\left(t, t_{0}\right)+\sum_{k=0}^{n-1} x^{\Delta^{k}}\left(t_{0}\right) h_{k}\left(t, t_{0}\right)\right) . \tag{3.13}
\end{align*}
$$

From (2.5), we get

$$
x(t) \geq-\left[\int_{t_{0}}^{t} h_{n-1}(t, \sigma(u)) A(u) \Delta u+c H_{n}(t)\right]
$$

where c is defined as before. This implies (3.8), and thus (3.2) follows as before.
Theorem 3.2. Let conditions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold with $\beta=1, \gamma<1$ and suppose

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{H_{n}(t)} \int_{t_{0}}^{t} h_{n-1}(t, \sigma(u)) \int_{t_{0}}^{u} a(u, s) p_{1}^{\frac{\gamma}{\gamma-1}}(s) p_{2}^{\frac{1}{1-\gamma}}(s) \Delta s \Delta u<\infty \tag{3.14}
\end{equation*}
$$

for all $t_{0} \geq 0$. If x is a nonoscillatory solution of equation (1.1), then (3.2) holds.
Proof. Let x be a nonoscillatory solution of equation (1.1). First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{0}$ for some $t_{0} \geq 0$. Using conditions $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ with $\beta=1$ and $\gamma<1$ in equation (1.1), we have

$$
x^{\Delta^{n}}(t) \leq \int_{t_{0}}^{t} a(t, s)\left[p_{2}(s) x^{\gamma}(s)-p_{1}(s) x(s)\right] \Delta s-\int_{0}^{t_{0}} a(t, s) F(s, x(s)) \Delta s
$$

for $t \geq t_{0}$. Hence

$$
\begin{equation*}
x^{\Delta^{n}}(t) \leq \int_{t_{0}}^{t} a(t, s)\left[p_{2}(s) x^{\gamma}(s)-p_{1}(s) x(s)\right] \Delta s+b \quad \text { for } \quad t \geq t_{0} \tag{3.15}
\end{equation*}
$$

where b is defined as in the proof of Theorem 3.1. By applying (2.2) with

$$
\lambda=\gamma, \quad X=p_{2}^{\frac{1}{\gamma}}(t) x(t), \quad Y=\left(\frac{1}{\gamma} p_{1}(t) p_{2}^{-\frac{1}{\gamma}}(t)\right)^{\frac{1}{\gamma-1}},
$$

we obtain

$$
\begin{equation*}
p_{2}(t) x^{\gamma}(t)-p_{1}(t) x(t) \leq(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} p_{1}^{\frac{\gamma}{\gamma-1}}(t) p_{2}^{\frac{1}{1-\gamma}}(t) \quad \text { for } \quad t \geq t_{0} . \tag{3.16}
\end{equation*}
$$

Using (3.16) in (3.15), we find

$$
x^{\Delta^{n}}(t) \leq(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} \int_{t_{0}}^{t} a(t, s) p_{1}^{\frac{\gamma}{\gamma-1}}(s) p_{2}^{\frac{1}{1-\gamma}}(s) \Delta s+b .
$$

The rest of the proof is similar to the proof of Theorem 3.1 and hence is omitted.
Finally, we present the following result with different nonlinearities, i.e., with $\beta>1$ and $\gamma<1$.

Theorem 3.3. Let conditions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold with $\beta>1, \gamma<1$ and suppose that there exists a positive rd-continuous function $\xi: \mathbb{T} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \frac{1}{H_{n}(t)} \int_{t_{0}}^{t} h_{n-1}(t, \sigma(u)) \int_{t_{0}}^{u} a(u, s)\left[c_{1} \xi^{\frac{\beta}{\beta-1}}(s) p_{1}^{\frac{1}{1-\beta}}(s)+\right. \\
& \left.\quad+c_{2} \xi^{\frac{\gamma}{\gamma-1}}(s) p_{2}^{\frac{1}{1-\gamma}}(s)\right] \Delta s \Delta u<\infty \tag{3.17}
\end{align*}
$$

for all $t_{0} \geq 0$, where $c_{1}=(\beta-1) \beta^{\frac{\beta}{1-\beta}}$ and $c_{2}=(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}}$. If x is a nonoscillatory solution of equation (1.1), then (3.2) holds.
Proof. Let x be a nonoscillatory solution of equation (1.1). First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{0}$ for some $t_{0} \geq 0$. Using conditions $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ in equation (1.1), we obtain

$$
\begin{align*}
x^{\Delta^{n}}(t) \leq & \int_{t_{0}}^{t} a(t, s)\left[\xi(s) x(s)-p_{1}(s) x^{\beta}(s)\right] \Delta s+ \\
& +\int_{t_{0}}^{t} a(t, s)\left[p_{2}(s) x^{\gamma}(s)-\xi(s) x(s)\right] \Delta s-\int_{0}^{t_{0}} a(t, s) F(s, x(s)) \Delta s \quad \text { for } t \geq t_{0} \tag{3.18}
\end{align*}
$$

As in the proofs of Theorems 3.1 and 3.2 , one can easily find

$$
\begin{align*}
x^{\Delta^{n}}(t) \leq & \int_{t_{0}}^{t} a(t, s)\left[(\beta-1) \beta^{\frac{\beta}{1-\beta}} \xi^{\frac{\beta}{\beta-1}}(s) p_{1}^{\frac{1}{1-\beta}}(s)+\right. \tag{3.19}\\
& \left.+(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} \xi^{\frac{\gamma}{\gamma-1}}(s) p_{2}^{\frac{1}{1-\gamma}}(s)\right] \Delta s+b
\end{align*}
$$

The rest of the proof is similar to the proof of Theorem 3.1 and hence is omitted.

4. REMARKS AND EXTENSIONS

We conclude by presenting several remarks and extensions of the results given in Section 3.

Remark 4.1. The results presented in this paper are new for $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{Z}$. Let us therefore rewrite the crucial condition in Theorem 3.1 (this can be done similarly for Theorem 3.2 and Theorem 3.3) for the two special time scales $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=Z$. If $\mathbb{T}=\mathbb{R}$, then (1.1) becomes

$$
x^{(n)}(t)+\int_{0}^{t} a(t, s) F(s, x(s)) \mathrm{d} s=0
$$

and condition (3.1) turns into

$$
\lim _{t \rightarrow \infty} \frac{1}{\sum_{k=0}^{n} \frac{t^{k}}{k!}} \int_{t_{0}}^{t} \frac{(t-u)^{n-1}}{(n-1)!} \int_{t_{0}}^{u} a(u, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \mathrm{d} s \mathrm{~d} u<\infty .
$$

If $\mathbb{T}=\mathbb{Z}$, then (1.1) becomes

$$
\Delta^{n} x(t)+\sum_{s=0}^{t-1} a(t, s) F(s, x(s))=0
$$

and condition (3.1) turns into

$$
\lim _{t \rightarrow \infty} \frac{1}{\sum_{k=0}^{n} \frac{t \underline{k}}{k!}} \sum_{u=t_{0}}^{t-1} \frac{(t-u-1) \frac{n-1}{(n-1)!}}{\sum_{s=t_{0}}^{u-1} a(u, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s)<\infty . . ~ . ~ . ~}
$$

Remark 4.2. The results of this paper are presented in a form which is essentially new for equation (1.1) with different nonlinearities.

Remark 4.3. The results of this paper will remain the same if we replace (1.2) of assumption $\left(\mathrm{H}_{1}\right)$ by

$$
\sup _{0 \leq s \leq T \leq t} a(t, s)=: K_{T}<\infty \quad \text { for all } \quad T \geq 0,
$$

since then (1.2) is satisfied with $k_{T}=T K_{T}$.
Remark 4.4. The results of this paper will remain the same if we replace (1.2) of assumption $\left(\mathrm{H}_{1}\right)$ by the assumption that there exist rd-continuous functions $\alpha, \beta: \mathbb{T} \rightarrow \mathbb{R}^{+}$such that $a(t, s)<\alpha(t) \beta(s)$ for all $t \geq s$,

$$
\sup _{t \geq 0} \alpha(t)=: K_{\alpha}<\infty ;
$$

and

$$
\sup _{t \geq 0} \int_{0}^{t} \beta(s) \Delta s=: K_{\beta}<\infty
$$

since then (1.2) is satisfied with $k_{T}=K_{\alpha} K_{\beta}$.
Remark 4.5. If we skip (1.2) of assumption $\left(\mathrm{H}_{1}\right)$ and pick $t_{0}=0$ in Theorem 3.1, Theorem 3.2 and Theorem 3.3, then the results of this paper will remain true for an eventually positive and eventually negative solution.

Remark 4.6. The techniques described in this paper can be employed to Volterra integral equations on time scales of the form

$$
\begin{equation*}
x(t)+\int_{0}^{t} a(t, s) F(s, x(s)) \Delta s=0 . \tag{4.1}
\end{equation*}
$$

As an example illustrating Remark 4.5 and 4.6 , we reformulate Theorem 3.1 as follows.
Theorem 4.7. Let conditions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold with $\beta>1, \gamma=1$ and assume

$$
\int_{0}^{\infty} a(t, s) p_{2}^{\frac{\beta}{\beta-1}}(s) p_{1}^{\frac{1}{1-\beta}}(s) \Delta s<\infty .
$$

Then any positive solution of equation (4.1) is bounded.
Remark 4.8. The results of this paper can be extended easily to delay integro-dynamic equations of the form

$$
x^{\Delta^{n}}(t)+\int_{0}^{t} a(t, s) F(s, x(g(s))) \Delta s=0
$$

where $g: \mathbb{T} \rightarrow \mathbb{T}$ is rd-continuous such that $g(t) \leq t$ and $g^{\Delta}(t) \geq 0$ for $t \geq 0$ and $\lim _{t \rightarrow \infty} g(t)=\infty$.
Remark 4.9. We note that we can reformulate the obtained results for the time scales $\mathbb{T}=\mathbb{R}$ (the continuous case), $\mathbb{T}=\mathbb{Z}$ (the discrete case), $\mathbb{T}=q^{\mathbb{N}_{0}}$ with $q>1$ (the quantum calculus case), $\mathbb{T}=h \mathbb{Z}$ with $h>0, \mathbb{T}=\mathbb{N}_{0}^{2}$ etc.; see [1,2].

Acknowledgments

The authors would like to thank both referees for their valuable comments.

REFERENCES

[1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
[2] M. Bohner, A. Peterson (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[3] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1952.
[4] G. Karakostas, I.P. Stavroulakis, Y. Wu, Oscillations of Volterra integral equations with delay, Tohoku Math. J. (2) 45 (1993) 4, 583-605.
[5] B. Karpuz, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients, Electron. J. Qual. Theory Differ. Equ. 34 (2009), 14 pp .
[6] H. Onose, On oscillation of Volterra integral equations and first order functional--differential equations, Hiroshima Math. J. 20 (1990) 2, 223-229.
[7] N. Parhi, N. Misra, On oscillatory and nonoscillatory behaviour of solutions of Volterra integral equations, J. Math. Anal. Appl. 94 (1983) 1, 137-149.
[8] B. Singh, On the oscillation of a Volterra integral equation, Czechoslovak Math. J. 45 (120) (1995) 4, 699-707.

Martin Bohner
bohner@mst.edu

Missouri University of Science and Technology
Department of Mathematics and Statistics
Rolla, Missouri 65409-0020, USA
Said Grace
saidgrace@yahoo.com
Cairo University
Department of Engineering Mathematics
Faculty of Engineering
Orman, Giza 12221, Egypt
Nasrin Sultana
nsq4d@mail.mst.edu
Missouri University of Science and Technology
Department of Mathematics and Statistics
Rolla, Missouri 65409-0020, USA
Received: August 21, 2013.
Revised: October 16, 2013.
Accepted: October 30, 2013.

