Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, dynamic response improvement of the grid connected hybrid system comprising of the wind power generation system (WPGS) and the photovoltaic (PV) are investigated under some critical circumstances. In order to maximize the output of solar arrays, a maximum power point tracking (MPPT) technique is presented. In this paper, an intelligent control technique using the artificial neural network (ANN) and the genetic algorithm (GA) are proposed to control the MPPT for a PV system under varying irradiation and temperature conditions. The ANN-GA control method is compared with the perturb and observe (P&O), the incremental conductance (IC) and the fuzzy logic methods. In other words, the data is optimized by GA and then, these optimum values are used in ANN. The results are indicated the ANN-GA is better and more reliable method in comparison with the conventional algorithms. The allocation of a pitch angle strategy based on the fuzzy logic controller (FLC) and comparison with conventional PI controller in high rated wind speed areas are carried out. Moreover, the pitch angle based on FLC with the wind speed and active power as the inputs can have faster response that lead to smoother power curves, improving the dynamic performance of the wind turbine and prevent the mechanical fatigues of the generator.
Czasopismo
Rocznik
Tom
Strony
291--314
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr., wz.
Twórcy
autor
- Department of Electrical Engineering, Saveh Branch Islamic Azad University, Saveh, Iran
autor
- Department of Electrical Engineering, Saveh Branch Islamic Azad University, Saveh, Iran
autor
- Department of Electrical Engineering, Saveh Branch Islamic Azad University, Saveh, Iran
Bibliografia
- [1] Rezvani A., Gandomkar M., Izadbakhsh M., Ahmadi A., Environmental/economic scheduling of a micro-grid with renewable energy resources. Journal of Cleaner Production 87: 216-226 (2015).
- [2] Izadbakhsh M., Gandomkar M., Rezvani A., Ahmadi A., Short-term resource scheduling of a renewable energy based micro grid. Renewable Energy 75: 598-606 (2015).
- [3] Farret F.A., Simões M.G., Integration of Alternative Sources of Energy, New York, NY, USA, Wiley (2006).
- [4] Hayrettin C., Model of a photovoltaic panel emulator in MATLAB-Simulink. Turk Turkish Journal of Electrical Engineering & Computer Sciences 21: 301-308 (2013).
- [5] Villalva M.G., Gazoli J.R., Filho E., Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics 24(5): 1198-1208 (2009).
- [6] Chu C.C., Chen C.L., Robust maximum power point tracking method for photovoltaic cells: a sliding mode control approach, Solar Energy 83(8): 1370-1378 (2009).
- [7] Liu F.F., Duan S., Liu B., Kang Y., A variable step size INC MPPT method for PV systems, IEEE Transaction on Industrial Electronics 55(7): 622-2628 (2008).
- [8] ALTIN N., Type-2 Fuzzy Logic Controller Based Maximum Power Point Tracking in Photovoltaic Systems. Advances in Electrical and Computer Engineering 13:65-70 (2013).
- [9] Bouchafaa F., Hamzaoui I., Hadjammar A., Fuzzy Logic Control for the tracking of maximum power point of a PV system. Energy Procedia 6:152-159 (2011).
- [10] Rezvani A., Gandomkar M., Izadbakhsh M., Vafaei S., Optimal power tracker for photovoltaic system using ann-ga. International Journal of Current Life Sciences 4: 107-111 (2014).
- [11] Rai A.K., Kaushika N.D., Singh B., Agarwal N., Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Materials and Solar Cells 95(2): 773-778 (2011).
- [12] Cernazanu C., Training Neural Networks Using Input Data Characteristics. Advances in Electrical and Computer Engineering 8(2): 65-70 (2008).
- [13] Fangrui L., Duan S., Liu F., Liu B., A Variable Step Size INC MPPT Method for PV Systems. IEEE Transaction on Industrial Electronics 55(7): 2622-2628 (2008).
- [14] Esram T., Chapman P.L., Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion 22: 439-449 (2007).
- [15] Simoes M.G., Franceschetti N.N., Fuzzy Optimisation Based Control of a Solar Array System. Electric Power Applications 146(5): 552-558 (1999).
- [16] Lee S., Kim J., Cha H., Design and Implementation of Photovoltaic Power Conditioning System using a Current-based Maximum Power Point Tracking. Journal of Electrical Engineering & Technology 5(4): 606-613 (2010).
- [17] Hiyama T., Kouzuma S., Imakubo T., Ortmeyer T.H., Evaluation of Neural Network Based Real Time Maximum Power Tracking Controller Far PV System, IEEE Transaction On Energy Conversion 10(3): 543-548 (1995).
- [18] Hiyama T., Kitabayashi K., Neural Network Based Estimation of Maximum Power Generation from PV Module Using Environment Information. IEEE Transaction on Energy Conversion 12(3): 241-247 (1997).
- [19] Karatepe E., Boztepe M., Colak M., Neural network based solar cell model. Energy Conversion and Management 47(9-10): 1159-1178 (2006).
- [20] Banu G., Suja S., Fault location technique using GA-ANFIS for UHV line. Archives of Electrical Engineering 63(2): 247-262 (2014).
- [21] Rezvani A., Gandomkar M., Izadbakhsh M., Vafaei S., Investigation of ANN-GA and modified perturb and observe MPPT techniques for photovoltaic system in the grid connected mode. Indian Journal of Science and Technology 8(1): 87-95 (2015).
- [22] Ramaprabha R., Gothandaraman V., Kanimozhi K., Divya R., Mathur B.L., Maximum power point tracking using GA-optimized artificial neural network for Solar PV system. [In:] IEEE 2011 Electrical Energy Systems (ICEES), Newport Beach, Calif, USA: IEEE, pp. 264-268 (2011).
- [23] Vincheh M.R, Kargar A, GH.A., A Hybrid Control Method for Maximum Power Point Tracking (MPPT) in Photovoltaic Systems. Arabian Journal for Science and Engineering 39(6): 4715-4725 (2014).
- [24] Izadbakhsh M., Gandomkar M., Rezvani A., Vafaei S., Comparison of FLC-GA-PI Methods to Smooth the Output Power of Wind Turbine in the Grid Connected Mode. SOP Transactions on Power Transmission and Smart Grid 1(1):44-59 (2014).
- [25] Gasbaoui B., Abdelkader C.H., Adellah L., Multi-input multi-output fuzzy logic controller for utility electric vehicle. Archives of Electrical Engineering 60(3): 239-256 (2011).
- [26] Yuan L.K., Chen Y., Chang Y., MPPT Battery Charger for Stand-Alone Wind Power System. IEEE Transaction on Industrial Electronics 26:1631-1638 (2011).
- [27] Izadbakhsh M., Gandomkar M., Rezvani A., Vafaei S., Dynamic Responses Improvement of Grid Connected WPGS using FLC in High Wind Speeds. International Journal of Soft Computing, Mathematics and Control (IJSCMC) 3(4): 33-49 (2014).
- [28] Lingfeng X., Xiyun Y., Xinran L., Daping X., Based on adaptive fuzzy sliding mode controller. [In:] IEEE 2008 in Intelligent Control and Automation WCICA 7th World Congress on china: IEEE, pp. 2970-2975 (2008).
- [29] Amendola C.A.M., Gonzaga D.P., Fuzzy-Logic Control System of a Variable-Speed Variable-Pitch Wind-Turbine and a Double-Fed Induction Generator. [In:] IEEE 2007 Intelligent Systems Design and Applications, Seventh International Conference, Brazil: IEEE. pp. 252-257 (2007).
- [30] Senjyu T., Sakamoto R., Urasaki N., Funabashi T., Sekine H., Output power leveling of wind farm using pitch angle control with fuzzy neural network. [In:] IEEE Power Engineering Society General Meeting, Japan: IEE, pp. 1- 8 (2006).
- [31] Van T.L., Lee D.CH., Output power smoothening of variable - speed wind turbine systems by pitch angle control. [In:] IEEE 2012 Conference on Power & Energy, Ho Chi Minh City, China: IEEE, pp. 166-171 (2012).
- [32] Das D., Esmaili R., Xu L., Nichols D., An Optimal Design of a Grid Connected Hybrid Wind/Photovoltaic/ Fuel Cell System for Distributed Energy Production, 31st Annual Conference of IEEE Industrial Electronics, USA, pp. 2499-2504 (2005).
- [33] Ahmed N.A., Miyatake M., Al-Othman A.K., Power Fluctuations Suppression of Stand-Alone Hybrid Generation Combining Solar Photovoltaic/Wind Turbine and Fuel Cell Systems. Energy Conversion and Management 49(10): 2711-2719 (2008).
- [34] Balasubramanian G., Singaravelu S., Fuzzy Controller for Stand Alone Hybrid PV-Wind Generation Systems, International Journal of Soft Computing and Engineering (IJSCE) 2: 314-320 (2013).
- [35] Esmaeili S., Shafiee S., Simulation of Dynamic Response of Small Wind-Photovoltaic-Fuel Cell Hybrid Energy System, Smart Grid and Renewable Energy 3.194-302 (2012).
- [36] Cajethan N., Uchenna U.C., Theophilus M., Wind-Solar Hybrid Power System for Rural Applications in the South Eastern States of Nigeria. J. Electrical Systems 8: 304-316 (2012).
- [37] Yang J, Honavar V. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 13: 44-49 (1998).
- [38] Arifujjaman Md., Modeling, Simulation and Control of Grid Connected Permanent Magnet Generator (PMG)-based Small Wind Energy Conversion System, In: IEEE Electrical Power & Energy Conference; Halifax, NS Canada: IEEE., pp. 1-6 (2010).
- [39] Rosyadi M., Muyeen S.M., Takahashi R., Tamura J., Transient stability enhancement of variable speed permanent magnet wind generator using adaptive pi-fuzzy controller. [In:] IEEE PowerTech. Conference, Trondheim, Norway: IEEE. pp. 1-6 (2011).
- [40] Blaabjerg F., Teodorescu R., Liserre M., Timbus A.V., Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Transactions on Industrial Electronics 53(5): 1398-1409 (2006).
- [41] Izadbakhsh M., Rezvani A., Gandomkar M., Improvement of microgrid dynamic performance under fault circumstances using ANFIS for fast varying solar radiation and fuzzy logic controller for wind system. Archives of Electrical Engineering 63(4): 551-578 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-266fcefe-f095-47d7-8343-8857b3837c3a