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The essence of the presented attrition process control relies on the solving defined  sequence of target 
assignment problems at specific moments. The sequence of these moments is obtained for both sides of the 
battle. The model takes into account the changes of the number of means and targets as well as changes in 
environmental conditions. It is reflected in the parameters of problems. Each of the considered assignment 
problems belongs to the class of general assignment problems which does not contain totally unimodular 
matrix factors. 
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1. Introduction and main notation 
 
The control of the attrition process is the main 
part of the combat model. The main step in this 
process is to solve many specific assignment 
problems. Such an approach is also presented for 
example in [1], [3], [7]. 

Our objective is to describe the attrition 
process control that could be useful in the 
construction of computer combat simulator 
software. 
Let us denote by 

( )tAN  – the set of numbers of objects that belong 
to  side A  at time t  (usually it is unknown to the 
opponent), 

( )tBΝ  – the set of numbers of objects that belong 
to  side B  at time t  (usually it is unknown to the 
opponent), 
( )tS  = ( ) ( )





 tBS,tAS  – the state of both sides  

at time t . 
We consider two-sided battle and assume that 
both sides use only two-state ( )0,1  objects, where 
1  – denotes the state when an object is 
undestroyed.  
0  – denotes the state when an object is 
destroyed. 
It means that 
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We denote by  
( ) ( ) ( ){ }1tA

iS:tAitAN =∈= N    (3) 
 

( ) ( ) ( )






 =∈= 1tB

jS:tBjtBN N   (4) 

the sets of undestroyed objects of side A  and B
respectively. 
In general, both sides cannot recognize all of the 
objects belonging to the opponent. 
Therefore, we should define the following sets: 

( )tA
BN  – the set of numbers of undestroyed 

objects of side A  which are detected by side B  
at time t , 

( )tB
AN  – the set of numbers of undestroyed 

objects of side B  which are detected by side A  
at time t . 
The object whose index belongs to the set ( )tA

BN  
or ( )tB

AN  can be taken into account in the control 
of an attrition process. 

 
2. Targets assignment problem 
 
An object can destroy another object belonging 
to the opponent side if and only if it possess 
enough destroying resources. 
We denote by  

( )tA
ijZ  – total amount of resources belonging to  

the i -th object of side A  that can be used to 
destroy the j -th object of side B  at time t , 

( )tB
ijZ  – total amount of resources belonging to 

the j -th object of side B  that can be used to 
destroy the i -th object of side A  at time t . 
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We assume that the target assignment problems 
will be solved by two sides at the moments when 
the state ( )tS  changes or at other times 
determined by decision makers. 
Let 

...1,0kkt
=






  denote the sequence of the 

moments when at least one of the sides changes 
its assignment of fire (targets). 
At each  moment kt  the following assignment 
problems are being solved by side A  
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( ) { }1,0ktijx ∈  for all i,j   (9) 

 
where: 

( )ktB
ijb  – the loss of potential of side B  when the 

j -th object of side B  is destroyed by the i -th 
object of side A  at time kt , 

( )ktB
AN~  – the set of indices of the objects 

belonging to side B  which are given priority to 
be destroyed by side A  at time kt , 

( )ktA
jN  – the set of indices of the objects 

belonging to side A  that can destroy the  
j -th object of  side B  at time kt . 
It means that 
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belonging to  side B  that can be destroyed by 
the i -th object of side A  at time kt , 
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and by side B  
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where: 
( )ktA

ijb  – the loss of potential of side A  when 
the i -th object of side A  is destroyed by  
the j -th object of side B  at time kt , 
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In both assignment problems we take into 
account the following circumstances: 
− potential of each of the sides is additive; 
− the commanders of each of the sides give 

the priority at time kt  to destroy opponent 
objects; 

− there is no obligation to destroy all of the 
detected objects belonging to the opponent 
side, at time kt ; 

− at most one object belonging to one of the 
sides can destroy one object belonging to 
the opposite side. 
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The last circumstance significantly reduces 
computations. 
The objective functions reflected the advantages 
that both sides are going to achieve when 
assignments x  and y  are realized respectively. 
The assignment problems formulated above 
belong to the class NP – hard problems. So, it is 
difficult to achieve an optimal solution even for 
small-sized problem.  
In practice approximate solutions are accepted. 
Known examples of methods that solved 
assignment problems are presented in [4], [6], 
[8]. 
 
3. Calculation of kt  
 
The character of assignment problem and its 
parameters can be used to estimate the quality of 
conducting the process. 
We especially take into account facts such as: 
− character of objective function; 
− dependences among the following sets 
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respectively; 
− accuracy of solving the assignment 

problem; 
− total amount of resources that, each of the 

sides possesses at time kt ; 
− character of destroying streams which are 

generated by the objects at time kt . 
The destroying streams can be described in the 
following way: 
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where 
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M  – the number of shots that could be 

fired by i -th object of side A  at j -th object of 
side B  during the period 
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amounts of resources, 
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A
ij

t  – the interval between following shots fired 

by i -th object of side A  at j -th object of side B , 
or 

( )τ=
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where: 
( )τA

ij
M  – the number of renewals at the period 

1k
tt
−

−=τ  in general renewal process. 
Analogously for side B . 
In order to calculate the amount of resources at 
time t  we introduce the following notations: 

( )kA
ij
τ  – moment of delivering k -th supply for  

i -th object of side A  to destroy j -th object of 
side B , 

( )kA
ij

d  – the amount of supply at time ( )kA
ij
τ  for i -

th object of side A , 
( )kB

ji
τ  – moment of delivering k -th supply for  

j -th object of side B  to destroy i -th object of 
side A , 

( )kB
ji

d  – the amount of supply at time ( )kB
jiτ  for  

j -th object of side B , 
and 
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At time t  from the period ktt1kt ≤<−  the amount 
of resources equals 

( ) ( )1kt
A
ijZtA

ijZ −=  when ( ) 01ktijx =−   (19) 
 
while ( ) 11ktijx =−  we obtain 
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for t  that satisfies 
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Analogously for side B  
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object of side B  is destroyed by  n -th unique 
shot the i -th object of side A  since the time 

1kt − , and 0  otherwise. 
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random variable which equals 1  when the i -th 
object of side A  is destroyed by n -th unique 
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shot the j -th object of side B  since the time 

1kt − , and 0  otherwise. 
 
The probability ( )1kt,nB

ijp −  and ( )1kt,nA
ijp −  should 

be calculated with respect to the terrain 
conditions and equipments parameters. 
 
From (27) and (28) we obtain 
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where: 
A
kτ  – the moment when for the first time since 

1kt −  side A  decided to change its assignment 
due to other case than change of state, 

B
kτ  – the moment when for the first time since 

1kt −  side B  decided to change its assignment 
due to other case than change of state. 
 
Introducing denotation 
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4. Conclusions 
 
The presented model of  attrition process control 
is only one of the parts of combat process. It 
uses parameters from other parts and delivers 
some features for other ones. 

The obtained solutions of the assignment 
problems allow us to calculate the states of two 
participants of battle and their casualties at any 
time. These are two fundamental features to 
assess an indicator of combat success. 
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Model sterowania procesem ubywania 
 

M. CHUDY 
 
Istotą proponowanego modelu sterowania procesem ubywania potencjałów w walce jest rozwiązywanie 
sekwencji zadań przydziału celów w określonych chwilach czasowych. Chwile te są wyznaczone dla obu stron 
walczących. Model uwzględnia zmiany liczby środków walki oraz zamiany warunków otoczenia. 
Odzwierciedlone jest to poprzez zmiany parametrów problemów. Każdy ze sformułowanych problemów należy 
do klasy uogólnionych zadań przydziału i może nie posiadać unimodularnej macierzy współczynników 
ograniczeń. Wskazano przykłady opracowanych metod  rozwiązywania takich zadań. 
 
Słowa kluczowe: modelowanie matematyczne, proces ubywania, zadania przydziału. 
 


