PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of plant composition on methane emision from Moszne peatland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methane is the second most important man-made greenhouse gas after carbon dioxide. For more than the last 20 years the increase of the rate of CH4 emission has been varying dramatically each year. This trend is common worldwide, though in different parts of the world unevenly intense, conditioned by the amount of emissions from natural and anthropogenic sources. Peatland ecosystems are one of the natural methane emitters, responsible for about 24% of the total CH4 emissions. Methane emission from wetlands is the balance between the processes of methanogenesis and methanotrophy with an active role of wetlands plants composition. Participation of vegetation in the reduction the emissions by 30-35% was confirmed. Association of methanotrophic bacteria with plants has been already recognized by Raghoebarsing and colleagues, who showed that methanotrophic bacteria, as endosymbionts and epibionts, live both inside and outside the cells of Sphagnum sp. The main aim of this study was to estimate methane emissions from Moszne peatland, dominated by: Sphagnum sp., Eriophorum vaginatum, Carex nigra and Vaccinium uliginosum.
Rocznik
Strony
53--57
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
autor
  • The John Paul II Catholic of Lublin, Department of Biochemistry and Environmental Chemistry, ul. Konstantynów 1I, 20-708 Lublin, Poland
autor
  • The John Paul II Catholic of Lublin, Department of Biochemistry and Environmental Chemistry, ul. Konstantynów 1I, 20-708 Lublin, Poland
autor
  • University of Life Sciences in Lublin, Institute of Soil Science, Environment Engineering and Management, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
  • The John Paul II Catholic of Lublin, Department of Biochemistry and Environmental Chemistry, ul. Konstantynów 1I, 20-708 Lublin, Poland
  • The John Paul II Catholic of Lublin, Department of Biochemistry and Environmental Chemistry, ul. Konstantynów 1I, 20-708 Lublin, Poland
Bibliografia
  • 1. International Panel Climate Change. 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  • 2. Surgała J., Śliwka E. 2002. Emisja węglowodorów lotnych i metody jej ograniczania. Inżynieria Ekologiczna, 7: 23-29.
  • 3. Le Mer, J., Roger, P. 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37: 25-50.
  • 4. Kőlbener, A. 2010. Influence of plants upon methane emissions from wetlands. Doktorat.
  • 5. Chanton J.P. 2005. The effect of gas transport on the isotope signature of methane in wetlands. Org. Geochem., 36, 753-768.
  • 6. Berrittella C., Huissteden J. 2011. Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: the role of vegetation parameters. Clim. Past, 7: 1075-1087.
  • 7. Whalen, S.C., Reeburgh, W.S. 2000. Methane oxidation, production, and emission at Contrasting Sites in a Boreal Bog. Geomicrobiology Journal, 17: 237-251.
  • 8. Raghoebarsing A., Smolders A., Schmid M., Rijpstra I., Wolters- Arts M., Derksen J., Jetten M., Schouten S., Damste J., Lamers L., Roelof J., den Camp H., Strous M. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature Publishing Group: 1153-1155.
  • 9. DiSpirito A.A., Gulledge J., Shiemke A.K., Murrell J.C., Lidstrom M.E., Krema C.L. 1992. Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation, 2: 151-164.
  • 10. Dzwonko Z. 2007. Przewodnik do badań fitosocjologicznych. Wyd. Vademecum Geobotanicum, Poznań-Kraków.
  • 11. Stępniewska Z., Stefaniak E., Bucior K., Kuczumow A., Mroczka R., Siurek J., Charytoniuk P.,
  • 12. Szmagara A., Bennicelli R. 2001. Chemia analityczna w środowisku. Wyd. EKO KUL, Lublin.
  • 13. Waddington J.M., Harrison K., Kellner E., Baird A.J. 2009. Effect of atmospheric pressure and temperature on entrapped gas content in peat. Hydrological Processes, 23: 2970-2980.
  • 14. Chen Y., Murrell J.C. 2010. Methanotrophs in moss. Nature Geoscience, 3: 595-596.
  • 15. Wieder K.R., Vitt D.H., eds. 2006. Boreal Peatland Ecosystems. “Ecological Studies”, Springer: 47-66.
  • 16. Kölbener, A., Ström, L., Edwards, P.J., Olde Venterink, H. 2010. Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant and Soil, 326: 147-158.
  • 17. Parmentier F.J.W., van Huissteden J., Kip N., den Camp H.J.M.Op, Jetten M.S.M., Maximov T.C., Dolman A.J. 2011. The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra. Biogeosciences, 8(5): 1265-1278.
  • 18. Powell C.L., Agrawal A. 2011. Biodegradation of trichloroethene by methane oxidizers naturally associated with wetland plant roots. Wetlands, 31(1): 45-52.
  • 19. Vymazal J. 2002. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience Ecol. Eng., 18: 633-646.
  • 20. http://maps.geoportal.gov.pl.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2668254e-7de5-4a00-8404-20b379c00182
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.