PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Signal Processing Approach in Air Coupled Ultrasound Time Domain Beamforming

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents the results of experimental study on the possibilities of determining the source of an ultrasonic signal in two-dimensional space (distance, horizontal angle). During the research the team used a self-constructed linear array of MEMS microphones. Knowledge in the field of sonar systems was utilized to analyse and design a location system based on a microphone array. Using the above mentioned transducers and broadband ultrasound sources allows a quantitative comparison of estimation of the location of an ultrasonic wave source with the use of broadband modulated signals (modelled on bats’ echolocation signals) to be performed. During the laboratory research the team used various signal processing algorithms, which made it possible to select an optimal processing strategy, where the sending signal is known.
Rocznik
Strony
37--50
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Electronics, Wroclaw University of Technology Wybrzeze Wyspianskiego 27, 50-320 Wroclaw, Poland
autor
  • Faculty of Electronics, Wroclaw University of Technology Wybrzeze Wyspianskiego 27, 50-320 Wroclaw, Poland
  • Faculty of Behavioural Ecology, University of Wroclaw Pl. Uniwersytecki 1, 50-137 Wroclaw, Poland
Bibliografia
  • 1. Bass H.E., Sutherland L.C., Zuckerwar A.J., Blackstock D.T., Hester D.M. (1995), Atmospheric absorption of sound: Further developments, The Journal of the Acoustical Society of America, 97, 1, 680–683.
  • 2. Borenstein J., Koren Y. (1988), Obstacle avoidance with ultrasonic sensors, IEEE Trans. on Robotics and Automation, 4, 2, 213–218.
  • 3. Chou T.N., Wykes C. (1997), An integrated vision/ultrasonic sensor for 3D target recognition and measurement, Proc. Sixth International Conference on Image Processing and Its Applications, 189–193, Dublin.
  • 4. Johnson D.H., Dudgeon D.E. (1993), Array Signal Processing, Prentice-Hall, Englewood Cliffs.
  • 5. Ealo J., Seco F., Jimenez A. (2008), Broadband EMFi-based transducers for ultrasonic air applications, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55, 4, 919–929.
  • 6. Evans L.B., Bass H.E., Sutherland L.C. (1972), Atmospheric Absorption of Sound: Theoretical Predictions, The Journal of the Acoustical Society of America, 51, 5B, 1565–1575.
  • 7. Gudra T., Furmankiewicz J., Herman K. (2011), Bats Sonar Calls and its Application in Sonar Systems [in:] Sonar Systems, Kolev N.Z. [Ed.], InTech – Open Access Publisher, pp. 209–234.
  • 8. Harput S., Bozkurt A. (2008), Ultrasonic Phased Array Device for Acoustic Imaging in Air, IEEE Sensors Journal, 8, 11–12, 1755–1762.
  • 9. Kay L. (1964), An ultrasonic sensing probe as a mobility aid for the blind, Ultrasonics, 2, 2, 53–59.
  • 10. Krim H., Viberg M. (1996), Two decades of array signal processing research: the parametric approach, IEEE Signal Processing Magazine, 13, 4, 67–94.
  • 11. Medina L., Wykes C. (2001), Multiple target 3D location airborne ultrasonic system, Ultrasonics, 39, 1, 19–25.
  • 12. Paajanen M., Lekkala J., Kirjavainen K. (2000), ElectroMechanical Film (EMFi) – a new multipurpose electret material, Sensors and Actuators A: Physical, 84, 1–2, 95–102.
  • 13. Peremans H., Audenaert K., Van Campenhout J.M. (1993), A high-resolution sensor based on tri-aural perception, IEEE Trans. on Robotics and Automation, 9, 1, 36–48.
  • 14. Salamon R., Kowalik R., Podstawka I. (1997), Detection and signal processing in the acoustic echolocation system for the blind, Archives of Acoustics, 22, 277–295.
  • 15. Schillebeeckx F., De Mey F., Peremans H. (2008), Bio-inspired sonar antennae: Enhancing directivity patterns for localization, Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 366–371, USA.
  • 16. Shi R.Z., Horiuchi T.K. (2007), A Neuromorphic VLSI Model of Bat Interaural Level Difference Processing for Azimuthal Echolocation, IEEE Transactions on Circuits and Systems, 54, 1, 74–88.
  • 17. Strąkowski M.R., Kosmowski B.B., Kowalik R., Wierzba P. (2006), An ultrasonic obstacle detector based on phase beamforming principles, IEEE Sensors Journal, 6, 1, 179–186.
  • 18. Van Veen B.D., Buckley K.M. (1988), Beamforming: a versatile approach to spatial filtering, IEEE Acoustics, Speech, and Signal Processing, 5, 2, 4–24.
  • 19. Webb P., Wykes C. (1996), High-resolution beam forming for ultrasonic arrays, IEEE Transactions on Robotics and Automation, 12, 1, 138–146.
  • 20. Wykes C., Nagi F., Webb P. (1993), Ultrasound imaging in air, Proc. International Conference on Acoustic Sensing and Imaging, pp. 77–81, London
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-266797e2-4338-462e-8219-5d70c14fedab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.