PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective optimization of a hybrid excitation generator with a paralel magnetic circuit based on the coupling of dual optimization algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The coaxial parallel magnetic circuit dual-rotor hybrid excitation structure generator exhibits several advantages, including high output performance, a wide adjustment range, and excellent stability. This study introduces a topology for a parallel magnetic circuit hybrid excitation generator (PMC-HEG) that utilizes a combination of permanent magnet and electrical excitation. It features salient pole rotors and claw pole rotors, with the latter embedded with permanent magnets, sharing a common stator. The analysis of the rotor magnetic field is conducted using both the equivalent magnetic circuit method and the subdomain method. Through an examination of the generator’s electromagnetic performance, key rotor parameters related to optimization objectives are identified. Finite element simulation analysis is performed on the rotor parameters, employing various optimization algorithms to enhance the salient pole and claw pole rotors, focusing on the amplitude of the induced electromotive force and the distortion rate of the induced electromotive force as optimization targets. The final optimized parameter values are obtained. A prototype is fabricated and tested, with experimental results confirming the reliability of the optimization method. The optimized parallel magnetic circuit hybrid excitation generator demonstrates an increase in the amplitude of the induced electromotive force, an improvement in the fundamental wave of the induced electromotive force, a reduction in harmonic distortion rate, and a significant enhancement in overall output performance.
Rocznik
Strony
127--149
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
  • Shandong Remote Bento New Energy Vehicle Co Taian 271200, China
autor
  • School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
autor
  • Shandong Remote Bento New Energy Vehicle Co Taian 271200, China
autor
  • Shandong Remote Bento New Energy Vehicle Co Taian 271200, China
autor
  • School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
autor
  • School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
autor
  • School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
autor
  • School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
Bibliografia
  • [1] Rouholla R., Ehsan S.A., Asghar S.G., Design of a high speed interior claw synchronous reluctance machine, International Transactions on Electrical Energy Systems, vol. 31, no. 12 (2021), DOI: 10.1002/2050-7038.13200.
  • [2] Bailey G., Mancheri N., Acker V.K., Sustainability of Permanent Rare Earth Magnet Motors in (H)EV Industry, Journal of Sustainable Metallurgy, vol. 3, no. 3, pp. 611–626 (2017), DOI: 10.1007/s40831- 017-0118-4.
  • [3] Rigatos G., Abbaszadeh M., Siano P., A nonlinear optimal control approach for permanent magnet AC motors with non-sinusoidal back EMF, Electrical Engineering, vol. 104, no. 4, pp. 1–26 (2022), DOI: 10.1007/S00202-021-01475-3.
  • [4] Wrobel R., Thermal Management of Electrical Machines for Propulsion - Challenges and Future Trends, Archives of Electrical Engineering, vol. 71, no. 1, pp. 175–187 (2022), DOI: 10.24425/aee.2022.140204.
  • [5] Zhao J., Lin M., Fu X., A Review and Recent Advances in Hybrid Excitation Synchronous Motors and Their Control Technologies, Proceedings of the Chinese Society of Electrical Engineering (in Chinese), vol. 34, no. 33, pp. 1672–1695 (2014), DOI: 10.13334/j.0258-8013.pcsee.2014.33.010.
  • [6] Zhang Z., Wang D., Hua W., Design, and Operation Control Technologies of Hybrid Excitation Motors, Proceedings of the Chinese Society of Electrical Engineering (in Chinese), vol. 40, no. 24, pp. 7834–7850+8221 (2020), DOI: 10.13334/j.0258-8013.pcsee.201689.
  • [7] Yang C.X., Wang K., Liu Z.Y., Research on Magnetic Regulation Characteristics of Axial-radial Flux Type Permanent Magnet Synchronous Machine, Archives of Electrical Engineering, vol. 71, no. 1, pp. 75–90 (2022), DOI: 10.24425/aee.2022.140198.
  • [8] Paplicki P., A Novel Rotor Design for a Hybrid Excited Synchronous Machine, Archives of Electrical Engineering, vol. 66, no. 1, pp. 29–40 (2017), DOI: 10.1515/aee-2017-0003.
  • [9] Zhao Y., Huang W.J., Jiang W., Optimal Design and Performance Analysis of Dual-Stator Permanent Magnet Fault-Tolerant Machine, IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1–6 (2021), DOI: 10.1109/TMAG.2020.3026327.
  • [10] Xu Y., Zhu X., Liu C., A New Type of Tangential/Radial Magnetic Circuit Parallel Hybrid Excitation Synchronous Motor, Proceedings of the Chinese Society of Electrical Engineering (in Chinese), vol. 30, no. 36, pp. 53–58 (2010), DOI: 10.13334/j.0258-8013.pcsee.2010.36.009.
  • [11] Yu S., Analysis and Design of Claw-Pole Hybrid Excitation Double Salient Motor for Electric Vehicles, China University of Petroleum (East China) (2020), DOI: 10.27644/d.cnki.gsydu.2020.001053.
  • [12] Cheng Z.M., Design, analysis and control of hybrid excited doubly salient stator-permanent-magnet motor, SCIENCE CHINA Technological Sciences, vol. 53, no. 1, pp. 188–199 (2010), DOI: 10.1007/s11431- 009-0357-0.
  • [13] Shirzad E., Rahideh A., Analytical Model for Brushless Double Mechanical Port Flux-Switching Permanent Magnet Machines, IEEE Transactions on Magnetics, vol. 57, no. 10, pp. 1–13 (2021), DOI: 10.1109/TMAG.2021.3104938.
  • [14] Fukami T., Hayamizu T., Matsui Y., Steady-State Analysis of a Permanent-Magnet-Assisted Salient-Pole Synchronous Generator, IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 388–388 (2010), DOI: 10.1109/TEC.2010.2047037.
  • [15] Yldrz E., Güle M., Aydn M., An Innovative Dual-Rotor Axial-Gap Flux-Switching Permanent-Magnet Machine Topology with Hybrid Excitation, IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1–5 (2018), DOI: 10.1109/tmag.2018.2848878.
  • [16] Gysen B.L.J., Meessen K.J., Paulides J.J.H., General Formulation of the Electromagnetic Field Distribution in Machines and Devices Using Fourier Analysis, IEEE Transactions on Magnetics, vol. 46, no. 1, pp. 39–52 (2010), DOI: 10.1109/TMAG.2009.2027598.
  • [17] Zhu Z.Q., Wu L.J., Xia Z.P., An Accurate Subdomain Model for Magnetic Field Computation in Slotted Surface-Mounted Permanent-Magnet Machines, IEEE Transactions on Magnetics, vol. 46, no. 4, pp. 1100–1100 (2010), DOI: 10.1109/TMAG.2009.2038153.
  • [18] Zhang Y.F., Gao M.L., Wang L., Study of Electromagnetic Characteristics of Brushless Reverse Claw-Pole Electrically Excited Generators for Automobiles, Energies, vol. 16, no. 6, pp. 2573–2573 (2023), DOI: 10.3390/EN16062573.
  • [19] Cao Y., Feng L., Mao R., Multi-Objective Layered Optimization Design of Axial Magnetic Field Permanent Magnet Memory Motors, Chinese Journal of Electrical Engineering, vol. 41, no. 6, pp. 1983–1992 (2021), DOI: 10.13334/j.0258-8013.pcsee.201435.
  • [20] Aleksas S., Jan S., Rapid Multi-Objective Design Optimization of Switched Reluctance Motors Exploiting Magnetic Flux Tubes, IET Science, Measurement & Technology, vol. 12, no. 2, pp. 223–229 (2018), DOI: 10.1049/iet-smt.2017.0213.
  • [21] Liu Y., Song B., Zhou X., Analysis and Multi-Objective Optimization Design of Radial-Flux Permanent Magnet Motors, Journal of Motor and Control (in Chinese), vol. 27, no. 9, pp. 1–9 (2023), DOI: 10.15938/j.emc.2023.09.001.
  • [22] Cao Y., Feng L., Multi-Objective Optimization Design of Axial Magnetic Field Permanent Magnet Memory Motors Based on Response Surface Methodology, Journal of Nanjing University of Information Science & Technology (Natural Science Edition), vol. 13, no. 5, pp. 620–627 (2021), DOI: 10.13878/j.cnki.jnuist.2021.05.016.
  • [23] Muteba M., Optimization of Air Gap Length and Capacitive Auxiliary Winding in Three-Phase Induction Motors Based on a Genetic Algorithm, Energies, vol. 14, no. 15, pp. 4407–4407 (2021), DOI: 10.3390/EN14154407.
  • [24] Petchrompo S., Coit D.W., Brintrup A., Wannakrairot A., Parlikad A.K., A review of Pareto pruning methods for multi-objective optimization, Computers & Industrial Engineering (2022), DOI: 10.1016/J.CIE.2022.108022.
  • [25] Hu X.B., Gu S.H., Zhang C., Finding all Pareto Optimal Paths by Simulating Ripple Relay Race in Multi-Objective Networks, Swarm and Evolutionary Computation, vol. 64, no. 1, 100908 (2021), DOI: 10.1016/J.SWEVO.2021.100908.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2665e8d9-4de8-4728-a1f5-73175c4bbb24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.