PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a certain embedding in the space of measures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We take under consideration Young measures - objects that can be interpreted as generalized solutions of a class of certain nonconvex optimization problems arising among others in nonlinear elasticity or micromagnetics. They can be looked at from several points of view. We look at Young measures as at a class of weak* measurable, measure-valued mappings and consider the basic existence theorem for them. On the basis of this theorem, an imbedding of the set of bounded Borel functions into the set of Young measures is defined. Using the weak* denseness of the set of Young measures associated with simple functions in the set of Young measures, it is shown that this imbedding assigns the Young measure associated with any bounded Borel function.
Rocznik
Strony
53--63
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Institute of Mathematics, Czestochowa University of Technology, Częstochowa, Poland
Bibliografia
  • [1] Pedregal, P. (2000). Variational Methods in Nonlinear Elasticity Society for Industrial and Applied Mathematics.
  • [2] Müller, S. (1999). Variational models for microstructure and phase transitions. Calculus of variations and geometric evolution problems. Lecture Notes in Mathematics, (1713), Springer, 85-210.
  • [3] Kružík, M., & Roubíčk, T. (2019). Mathematical Methods in Continuum Mechanics of Solids. Springer Nature.
  • [4] Roubíček, T. (1997). Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter.
  • [5] Young, L.C. (1937). Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III, 30, 212-234.
  • [6] Florescu, L.C., & Godet-Thobie, Ch. (2012). Young Measures and Compactness in Measure Spaces. Walter de Gruyter GmbH & Co. KG.
  • [7] Pedregal, P. (1997). Parametrized Measures and Variational Principles. Birkhäuser.
  • [8] Puchała, P. (2017). A simple characterization of homogeneous Young measures and weak L1 convergence of their densities. Optimization, 66(2), 197-203.
  • [9] Puchała, P. (2014). An elementary method of calculating Young measures in some special cases. Optimization, 63(9), 1419-1430.
  • [10] Balder, E.J. (1997). Consequences of denseness of Dirac Young measures. Journal of Mathematical Analysis and Applications, 207, 536-540.
  • [11] Kružík, M., & Prohl, A. (2001). Young measure approximation in micromagnetics. Numerische Mathematik, 90, 291-307.
  • [12] DiPerna, R.J., & Majda, A.J. (1987). Oscillations and concentrations in weak solutions of the incompressible fluid equations. Communications in Mathematical Physics, 108, 667-689.
  • [13] Aleksić, J., Colombeau, J-F., Oberguggenberger, M., & Pilipović, A. (2009). Approximate generalized solutions and measure-valued solutions to conservation laws. Integral Transforms and Special Functions, 20, 163-170.
  • [14] De Philippis, G., & Rindler, F. (2017). Characterization of generalized Young measures generated by symmetric gradients. Archive for Rational Mechanics and Analysis, 224, 1087-1125.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2663e574-d1dd-44ea-b46e-d352b380c073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.