PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical predictions of brass/steel ingot structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metallographic studies performed on a cross-section of static steel ingot allow the observation of the following morphological zones: a) columnar grains (treated as austenite single crystals), b) zone of the columnar into equiaxed grains transformation (CET), and c) equiaxed grains at the ingot axis. These zones are reproduced theoretically by the numerical simulation. The simulation is based on the calculation of both the temperature field in a solidifying large steel ingot and the thermal gradient field obtained for the same boundary conditions. In particular, a new, innovative method based on the mathematical treatment applied to different functions resulting from both the aforementioned fields, are used in the structural predictions. The method developed, firstly for the massive steel ingot, has subsequently been applied to theoretically predict the structural zones in continuously cast brass ingots. In the case of continuously cast brass ingots three different morphologies were revealed experimentally: a) columnar structures, b) equiaxed structures preceded by the CET (sharp transition), and c) single crystals situated axially. The above model for the structural zones prediction is useful in plastic deformation design for: a) steel forging ingots assigned for the crankshafts applied to the ship engines, and b) continuously cast brass ingots assigned for special applications in the shipbuilding industry.
Rocznik
Strony
47--54
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
  • Institute of Metallurgy and Materials Science 25 Reymonta St., 30 059 Kraków, Poland
  • Institute of Applied Mathematics and Mechanics 74 Rosa Luxemburg St., 83-114 Donetsk, Ukraine
  • KGHM – Polish Copper Company 48 Skłodowskiej-Curie St., 59-301 Lubin, Poland
Bibliografia
  • 1. Fraś, E. & Olejnik, E. (2008) Interaction between Solidification Front and Alien Phase Particles. Archives of Metallurgy and Materials 53, 3, pp. 695–702.
  • 2. Gandin, CH.A. (2000) From Constrained to Unconstrained Growth during Directional Solidification. Acta Materialia 48, pp. 2483–2501.
  • 3. Hunt, J.D. (1984) Steady State Columnar/Equiaxed Growth of Dendrites and Eutectics. Materials Science and Engineering 65, pp. 75–83.
  • 4. Ivanova, A.A. (2013) Calculation of Phase Change Boundary Position in Continuous Casting. Archives of Foundry Engineering 13, 4, pp. 57–62.
  • 5. Konozsy, L., Ishmurzin, A., Grasser, M., Wu, M.H., Ludwig, A., Tanzer, R. & Schutzenhofer, W. (2010) Columnar to Equiaxed Transition during Ingot Casting using Ternary Alloy Composition. Materials Science Forum 649, pp. 349–354.
  • 6. Lorbiecka, A.Z. & Sarler, B. (2010) A Sensitivity Study of Grain Growth Model for Prediction of ECT/CET Transformations in Continuous Steel Casting. Materials Science Forum 649, pp. 373–378.
  • 7. Mirihanage, W.U., Dai, H., Dong, H. & Browne, D.J. (2013) Computational Modeling of Columnar to Equiaxed Transition in Alloy Solidification. Advanced Engineering Materials 15, 4, pp. 216–232.
  • 8. Shangguan, D., Ahuja, S. & Stefan’s, D.M. (1992) An Analytical Model for the Interaction between an Insoluble Particle and an Advancing Solid/Liquid Interface. Metallurgical Transactions 23A, pp. 669–706.
  • 9. Sztwiertnia, K., Pospiech, J., Rostek, T. & Faryna, M. (2002) Microstructure Development in Ridging Affected Ferritic Stainless Steel. Archives of Metallurgy and Materials 47, 2, pp. 197–204.
  • 10. Wołczyński, W., Kania, B., Wajda, W. & Kostrzewa, M. (2011) Space-Time-Structure Map for As Cast Massive Rolls. Conference Proceedings of the 8th ASME-JSME Thermal Engineering Joint Conference – AJTEC 2011, Honolulu, Hawaii, USA, 13–17 March 2011, Session 1-2-8: Computational Heat and Mass Transfer (Industrial Applications) – 1, 44021, p. 14.
  • 11. Wołczyński, W., Lipnicki, Z., Bydałek, A.W. & Ivanova, A.A. (2016) Structural Zones in Large Static Ingot. Forecasts for Continuously Cast Brass Ingot. Archives of Foundry Engineering 16, 3, pp. 141–146.
  • 12. Zyska, A., Konopka, Z., Łągiewka, M. & Nadolski, M. (2016) Modelling of the Dendritic Crystallization by the Cellular Automaton Method. Archives of Foundry Engineering 16, 1, pp. 99–106.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-265df1e2-ecb4-4b17-b681-0249aee2fe87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.