PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Key technologies and its application of gob-side entry retaining by roof cutting in a deep mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are many problems associated with the surrounding rocks of the gob-side entry retaining by roof cutting (GERRC) as they are difficult to stabilise in deep mines. The following needs to be studied to understand the problems such as the pressure relief mechanism, evolution law of the surrounding-rock stress and the key technologies of GERRC in deep mines. Cracks are formed by advanced directional blasting to sever the path of stress transmission from the roof of the goaf to the roof of the entry and reduce the lateral cantilever length of the roof. Therefore the surrounding-rock stress and roof structure are optimised. The broken and expanded gangue formed by the collapse of the strata in the range of roof cutting fills the mining space adequately, which avoids a rapid pressure increase caused by the roof breaking impact and slows down the movement of overlying strata. The deformation of the deep surrounding rocks is transformed from “abrupt” to “slow”, and the surrounding-rock deformation of the retained entry in deep mines is significantly reduced. The average pressure and periodic pressure of the supports near the blasting line can be reduced by the blasting cracks to a certain extent, mainly due to the reduction of the length of the immediate roof cantilever and the effective load of the main roof. The combined support technologies for GERRC in deep mines were proposed, and field tests were performed. The monitoring results show that the coordinated control system can effectively control the deformation of deep rock masses, and all indexes can meet the requirements of the next working face after the retained entry is stabilised.
Rocznik
Strony
55--77
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
  • School of Civil and Architectural Engineering, Anyang Institute of Technology, Anyang 455000, China
autor
  • School of Civil and Architectural Engineering, Anyang Institute of Technology, Anyang 455000, China
autor
  • Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China
Bibliografia
  • [1] A. Jaiswal, B.K. Shrivastva, Numerical simulation of coal pillar strength. Int. J. Rock. Mech. Min. 46 (4),779-788 (2009). DOI: https://doi.org/10.1016/j.ijrmms.2008.11.003.
  • [2] Q. Wang, H.K. Gao, B. Jiang, S.C. Li, M.C. He, D.C. Wang, W. Lu, Q. Qin, S. Gao, H.C Yu, Research on reasonable coal pillar width of roadway driven along goaf in deep mine. Arab. J. Geosci. 10 (21), 466 (2017). DOI: https://doi.org/10.1007/s12517-017-3252-1.
  • [3] P. Konicek, K. Soucek, L. Stas, R. Singh, Long-hole distress blasting for rockburst control during deep underground coal mining. Int. J. Rock. Mech. Min. 61,141-153 (2013). DOI: https://doi.org/10.1016/j.ijrmms.2013.02.001.
  • [4] Z.L. Li, L.M. Dou, W. Cai, G.F. Wang, Y.L. Ding, Y. Kong, Roadway stagger layout for effective control of gobside rock bursts in the longwall mining of a thick coal seam. Rock. Mech. Rock. Eng. 49 (2), 621-629 (2016). DOI: https://doi.org/10.1007/s00603-015-0746-6.
  • [5] P. Guan, H.Y. Wang, Y.X. Zhang, Mechanism of instantaneous coal outbursts. Geology 37 (10), 915-918 (2009). DOI: https://doi.org/10.1130/G25470A.1.
  • [6] R.L. Zhang, I.S. Lowndes, The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts. Int. J. Coal. Geol. 84 (2), 141-152. DOI: https://doi.org/10.1016/j.coal.2010.09.004.
  • [7] H.Y. Yang, S.G. Cao, S.Q. Wang, Y.C. Fan, S. Wang, X. Z. Chen, Adaptation assessment of gob-side entry retaining based on geological factors. Eng. Geol. 209, 143-151 (2016). DOI: https://doi.org/10.1016/j.enggeo.2016.05.016.
  • [8] B. Yu, Z.Y. Zhang, T.J. Kuang, J.R. Liu, Stress changes and deformation monitoring of longwall coal pillars located in weak ground. Rock. Mech. Rock. Eng. 49 (8), 3293-3305 (2016). DOI: https://doi.org/10.1007/s00603-016-0970-8.
  • [9] Y.L. Tan, F.H. Yu, J.G. Ning, T.B. Zhao, Design and construction of entry retaining wall along a gob side under hard roof stratum. Int. J. Rock. Mech. Min. 77, 115-121 (2015). DOI: https://doi.org/10.1016/j.ijrmms.2015.03.025.
  • [10] H.Y. Yang, S.G. Cao, Y. Li, C.M. Sun, P. Guo, Soft roof failure mechanism and supporting method for gob-side entry retaining. Minerals 5 (4), 707-722 (2015). DOI: https://doi.org/10.3390/min5040519.
  • [11] C.L. Han, N. Zhang, B.Y. Li, G.Y. Si, X.G. Zheng, Pressure relief and structure stability mechanism of hard roof for gob-side entry retaining. J. Cent. South. Univ. 22, 4445-4455 (2015). DOI: https://doi.org/10.1007/s11771-015-2992-x.
  • [12] N. Zhang, Y. Liang, C.L. Han, J.H. Xue. Stability and deformation of surrounding rock in pillarless gob-side entry retaining. Safety Sci. 50 (4), 593-599 (2015). DOI: https://doi.org/10.1016/j.ssci.2011.09.010.
  • [13] Z.Y Zhang, N. Zhang, H. Shimada, T. Sasaoka, S. Wahyudia. Optimization of hard roof structure over retained goaf-side gateroad by pre-split blasting technology. Int. J. Rock. Mech. Min. 100, 330-337 (2017). DOI: https://doi.org/10.1016/j.ijrmms.2017.04.007.
  • [14] Z.Z. Zhang, M. Deng, J.B. Bai, X.Y. Yu, Q.H. Wu, L.S. Jiang, Strain energy evolution and conversion under triaxial unloading confining pressure tests due to gob-side entry retained. Int. J. Rock. Mech. Min. 126, 104184 (2020). DOI: https://doi.org/10.1016/j.ijrmms.2019.104184.
  • [15] C.L. Han, N. Zhang, Z. Ran, R. Gao, H.Q. Yang, Superposed disturbance mechanism of sequential overlying strata collapse for gob-side entry retaining and corresponding control strategies. J. Cent. South Univ. 25, 2258-2271 (2018). DOI: https://doi.org/10.1007/s11771-018-3911-8.
  • [16] G.F. Zhang, M.C. He, X.P. Yu, Z.G. Huang, Research on the technique of no-pillar mining with gob-side entry retaining formed by advanced roof caving in the protective seam in baijiao coal mine. J. Min. Saf. Eng. 28 (4), 511-516 (2011). DOI: https://doi.org/10.3969/j.issn.1673-3363.2011.04.003.
  • [17] Q. Wang, M.C. He, J. Yang, H.K. Gao, B. Jiang, H.C. Yu, Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines. Int. J. Rock. Mech. Min. 110, 1-8 (2018). DOI: https://doi.org/10.1016/j.ijrmms.2018.07.005.
  • [18] X.M. Sun, X. Liu, G.F. Liang, D. Wang, Y.L. Jiang, Key parameters of gob-side entry retaining formed by roof cut and pressure releasing in thin seams. Chin. J. Rock. Mech. Eng. 33 (7), 1449-1456 (2014). DOI: https://doi.org/10.13722/j.cnki.jrme.2014.07.017.
  • [19] Z.B. Guo, J. Wang, T.P. Cao, J. Wang, Research on key parameters of gob-side entry retaining automatically formed by roof cut and pressure releasing in thin coal seams mining. J. China. U. Min. Techno. 45 (5), 879-885 (2016). DOI: https://doi.org/10.13247/j.cnki.jcumt.000560.
  • [20] G.F. Zhang, Y.Q. Xu, P.T. Ge, Research on cut gob-side entry retaining in thin coal seam of Tangshan ditch. Chin. J. Rock. Mech. Eng. 35 (7), 1397-1406 (2016). DOI: https://doi.org/10.13722/j.cnki.jrme.2015.1368.
  • [21] M.C. He, S.Y. Chen, Z.B. Guo, J. Yang, Y.B. Gao, Control of surrounding rock structure for gob-side entry retaining by cutting roof to release pressure and its engineering application. J. China. U. Min. Techno. 46 (5), 959-969 (2017). DOI: https://doi.org/10.13247/j.cnki.jcumt.000696.
  • [22] M.C. He, Y.B. Gao, J. Yang, W.L. Gong, An innovative approach for gob-side entry retaining in thick coal seam long wall mining. Energies 10 (11), 1785 (2017). DOI: https://doi.org/10.3390/en10111785.
  • [23] Z.M. Ma, J. Wang, M.C. He, Y.B. Gao, J.Z. Hu, Q. Wang, Key technologies and application test of an innovative noncoal pillar mining approach: a case study. Energies 11 (10), 2853 (2018). DOI: https://doi.org/10.3390/en11102853.
  • [24] X.Y. Zhang, M.C. He, J. Yang, E.Y. Wang, J.B. Zhang, Y. Sun, An innovative non-pillar coal-mining technology with automatically formed entry: a case study. Engineering 6 (11), 1315-1329 (2020). DOI: https://doi.org/10.1016/j.eng.2020.01.014.
  • [25] L.J. Dong, Y.C. Chen, D.Y. Sun, Y.H. Zhang, Implications for rock instability precursors and principal stress direction from rock acoustic experiments. Int. J. Min. Sci. Technol. 31 (5), 789-798 (2021). DOI: https://doi.org/10.1016/j.ijmst.2021.06.006.
  • [26] M.C. He, H.P. Xie, S.P. Peng, Y.D. Jiang, Study on rock mechanics in deep mining engineering. Chin. J. Rock. Mech. Eng. 24 (16), 2803-2813 (2005).
  • [27] X.M. Sun, F. Chen, C.Y. Miao, P. Song, G. Li, C.W. Zhao, X. Xia, Physical modeling of deformation failure mechanism of surrounding rocks for the deep-buried tunnel in soft rock strata during the excavation. Tunn. Undergr. Space Technol. 74, 247-261 (2016). DOI: https://doi.org/10.1016/j.tust.2018.01.022.
  • [28] Z.W. Yue, L.Y. Yang, Y.B. Wang, Experimental study of crack propagation in polymethyl methacrylate material with double holes under the directional controlled blasting. Fatigue. Fract. Eng. M. 36 (8), 827-833 (2013). DOI: https://doi.org/10.1111/ffe.12049.
  • [29] M.C. He, W.L. Gong, J. Wang, P. Qi, Z.G Tao, S. Du, Y.Y. Peng, Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int. J. Rock. Mech. Min. 67, 29-42 (2014). DOI: https://doi.org/10.1016/j.ijrmms.2014.01.007.
  • [30] X.M. Sun, Y. Zhang, D. Wang, J. Yang, H.C. Xu, M.C. He, Mechanical properties and supporting effect of CRLD bolts under static pull test conditions. Int. J. Min. Met. Mater. 24 (1), 1-9 (2017). DOI: https://doi.org/10.1007/s12613-017-1372-y.
  • [31] M.C. He, J. Wang, X.M. Sun, X.J. Yang, Mechanics characteristics and applications of prevention and control rock bursts of the negative poisson’s ratio effect anchor. J. China. Coal. Soc. 39 (2), 214-221 (2014). DOI: https://doi.org/10.13225/j.cnki.jccs.2013.2022.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-265bfbcc-fd8d-4d81-937e-6a4b2bbeaf65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.