Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A secure cryptosystem based on improved version of Yang–Gu algorithm has been proposed along with lower–upper (LU) decomposition for compression in gyrator transform. Yang–Gu algorithm introduces nonlinearity whereas LU decomposition leads to compression in the proposed scheme. Two random phase masks and binary phase modulators are used in the encryption process. Random phase masks act as public keys and binary phase modulations are applied to generate private keys. Grayscale and medical images are used to validate the proposed cryptosystem against different types of attacks. The statistical attack including information entropy, histogram analysis, correlation distribution plots, and 3-D plots are analyzed for the robustness of the proposed scheme. The quality of the retrieved image is compared with original image using the value of the correlation coefficient. The proposed scheme also showed resistance against data shuffling attack and basic attacks. Key sensitivity analysis demonstrated that the scheme is highly sensitive to its private keys and gyrator transform parameters. Therefore, based on above discussed results, the proposed scheme enhances the security.
Czasopismo
Rocznik
Tom
Strony
97--115
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Central University of Haryana, Mahendergarh, Haryana 123031, India
autor
- Department of Mathematics, SOET, Central University of Haryana, Mahendergarh, Haryana 123031, India
Bibliografia
- [1] REFREGIER P., JAVIDI B., Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters 20(7), 1995: 767-769. https://doi.org/10.1364/OL.20.000767
- [2] FRAUEL Y., CASTRO A., NAUGHTON T.J., JAVIDI B., Resistance of the double random phase encryption against various attacks, Optics Express 15(16), 2007: 10253-10265. https://doi.org/10.1364/ OE.15.010253
- [3] CARNICER A., MONTES-USATEGUI M., ARCOS S., JUVELLS I., Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys, Optics Letters 30(13), 2005: 1644-1646. https://doi.org/10.1364/OL.30.001644
- [4] PENG X., WEI H., ZHANG P., Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain, Optics Letters 31(22), 2006: 3261-3263. https://doi.org/10.1364/OL.31.003261
- [5] GOPINATHAN U., MONAGHAN D.S., NAUGHTON T.J., SHERIDAN J.T., A known-plaintext heuristic attack on the Fourier plane encryption algorithm, Optics Express 14(8), 2006: 3181-3186. https://doi.org/ 10.1364/OE.14.003181
- [6] QIN W., PENG X., Asymmetric cryptosystem based on phase-truncated Fourier transforms, Optics Letters 35(2), 2010: 118-120. https://doi.org/10.1364/OL.35.000118
- [7] WANG X., ZHAO D., A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms, Optics Communications 285(6), 2012: 1078-1081. https://doi.org/10.1016/j.optcom.2011.12.017
- [8] WANG X., CHEN Y., DAI C., ZHAO D., Discussion and a new attack of the optical asymmetric cryptosystem based on phase-truncated Fourier transform, Applied Optics 53(2), 2014: 208-213. https://doi.org/10.1364/AO.53.000208
- [9] WANG Y., QUAN C., TAY C.J., Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform, Applied Optics 54(22), 2015: 6874-6881. https://doi.org/10.1364/AO.54.006874
- [10] RAJPUT S.K., NISHCHAL N.K., Fresnel domain nonlinear optical image encryption scheme based on Gerchberg–Saxton phase-retrieval algorithm, Applied Optics 53(3), 2014: 418-425. https://doi.org/10.1364/AO.53.000418
- [11] LIU W., LIU Z., LIU S., Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang–Gu algorithm, Optics Letters 38(10), 2013: 1651-1653. https://doi.org/10.1364/OL.38.001651
- [12] HE W., MENG X., PENG X., Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang–Gu algorithm: Comment, Optics Letters 38(20), 2013: 4044. https://doi.org/10.1364/OL.38.004044
- [13] LIU W., LIU Z., LIU S., Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang–Gu algorithm: Reply, Optics Letters 38(20), 2013: 4045. https://doi.org/10.1364/OL.38.004045
- [14] SUI L., LIU B., WANG Q., LI Y., LIANG J., Double-image encryption based on Yang–Gu mixture amplitude-phase retrieval algorithm and high dimension chaotic system in gyrator domain, Optics Communications 354, 2015: 184-196. https://doi.org/10.1016/j.optcom.2015.05.071
- [15] SUI L., LIU B., WANG Q., LI Y., LIANG J., Color image encryption by using Yang–Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map, Optics and Lasers in Engineering 75, 2015: 17-26. https://doi.org/10.1016/j.optlaseng.2015.06.005
- [16] ABUTURAB M.R., Securing multiple information using wavelet transform and Yang–Gu mixture amplitude-phase retrieval algorithm, Optics and Lasers in Engineering 118, 2019: 42-51. https://doi.org/10.1016/j.optlaseng.2019.01.015
- [17] WANG Y., QUAN C., TAY C.J., Nonlinear multiple-image encryption based on mixture retrieval algorithm in Fresnel domain, Optics Communications 330, 2014: 91-98. https://doi.org/10.1016/j.optcom.2014.05.032
- [18] RAKHEJA P., YADAV S., TOBRIA A., A novel image encryption mechanism based on umbrella map and Yang–Gu algorithm, Optik 271, 2022: 170152. https://doi.org/10.1016/j.ijleo.2022.170152
- [19] TOBRIA A., SINGH P., A comparative analysis of phase retrieval algorithms in asymmetric double image cryptosystem in gyrator domain, Optical and Quantum Electronics 56, 2024: 33. https://doi.org/ 10.1007/s11082-023-05524-y
- [20] WANG Y., QUAN C., TAY C.J., Asymmetric optical image encryption based on an improved amplitude–phase retrieval algorithm, Optics and Lasers in Engineering 78, 2016: 8-16. https://doi.org/10.1016/j.optlaseng.2015.09.008
- [21] SAYOOD K., Introduction to Data Compression, 3rd Ed., Morgan Kaufmann Series in Multimedia Information and Systems, Elsevier, Amsterdam, Boston, 2006.
- [22] RHEE H., JANG Y.I., KIM S., CHO N.I., Lossless image compression by joint prediction of pixel and context using duplex neural networks, IEEE Access 9, 2021: 86632-86645. https://doi.org/10.1109/ACCESS.2021.3088936
- [23] OTAIR M., ABUALIGAH L., QAWAQZEH M.K., Improved near-lossless technique using the Huffman coding for enhancing the quality of image compression, Multimedia Tools and Applications 81, 2022: 28509-28529. https://doi.org/10.1007/s11042-022-12846-8
- [24] CHAI X., ZHENG X., GAN Z., HAN D., CHEN Y., An image encryption algorithm based on chaotic system and compressive sensing, Signal Processing 148, 2018: 124-144. https://doi.org/10.1016/j.sigpro.2018.02.007
- [25] WANG H., XIAO D., LI M., XIANG Y., LI X., A visually secure image encryption scheme based on parallel compressive sensing, Signal Processing 155, 2019: 218-232. https://doi.org/10.1016/j.sigpro.2018.10.001
- [26] HUANG S., JIANG D., WANG Q., GUO M., HUANG L., LI W., CAI S., High-quality visually secure image cryptosystem using improved Chebyshev map and 2D compressive sensing model, Chaos, Solitons & Fractals 163, 2022: 112584. https://doi.org/10.1016/j.chaos.2022.112584
- [27] YE G., LIU M., WU M., Double image encryption algorithm based on compressive sensing and elliptic curve, Alexandria Engineering Journal 61(9), 2022: 6785-6795. https://doi.org/10.1016/j.aej.2021.12.023
- [28] ABUTURAB M.R., ALFALOU A., Multiple color image fusion, compression, and encryption using compressive sensing, chaotic-biometric keys, and optical fractional Fourier transform, Optics & Laser Technology 151, 2022: 108071. https://doi.org/10.1016/j.optlastec.2022.108071
- [29] CHAI X., FU J., GAN Z., LU Y., ZHANG Y., HAN D., Exploiting semi-tensor product compressed sensing and hybrid cloud for secure medical image transmission, IEEE Internet of Things Journal 10(8), 2023: 7380-7392. https://doi.org/10.1109/JIOT.2022.3228781
- [30] SAAD A.-M.H.Y., ABDULLAH M.Z., High-speed implementation of fractal image compression in low cost FPGA, Microprocessors and Microsystems 47, 2016: 429-440. https://doi.org/10.1016/j.micpro.2016.08.004
- [31] ZHOU N.-R., TONG L.-J., ZOU W.-P., Multi-image encryption scheme with quaternion discrete fractional Tchebyshev moment transform and cross-coupling operation, Signal Processing 211, 2023: 109107. https://doi.org/10.1016/j.sigpro.2023.109107
- [32] PING P., YANG X., ZHANG X., MAO Y., KHALID H., Generating visually secure encrypted images by partial block pairing-substitution and semi-tensor product compressed sensing, Digital Signal Processing 120, 2022: 103263. https://doi.org/10.1016/j.dsp.2021.103263
- [33] JRIDI M., ALFALOU A., MEHER P.K., Optimized architecture using a novel subexpression elimination on Loeffler algorithm for DCT-based image compression, VLSI Design, Vol. 2012, 2012: 209208. https://doi.org/10.1155/2012/209208
- [34] XUE J., YIN L., LAN Z., LONG M., LI G., WANG Z., XIE X., 3D DCT based image compression method for the medical endoscopic application, Sensors 21(5), 2021: 1817. https://doi.org/10.3390/s21051817
- [35] RAJPRABU R., PRATHIBA T., DEEPA PRIYA V., RAJKUMAR A., RAJKANNAN C., RAMALAKSHMI P., Transforming pixels: Crafting a 3D integer discrete cosine transform for advanced image compression, International Journal of Advanced Computer Science and Applications 15(5), 2024: 819-826. https://doi.org/10.14569/IJACSA.2024.0150582
- [36] HUANG Z., ZHANG X., CHEN L., ZHU Y., AN F., WANG H., FENG S., A vector-quantization compression circuit with on-chip learning ability for high-speed image sensor, IEEE Access 5, 2017: 22132-22143. https://doi.org/10.1109/ACCESS.2017.2762399
- [37] KIM H., NO A., LEE H.-J., SPIHT algorithm with adaptive selection of compression ratio depending on DWT coefficients, IEEE Transactions on Multimedia 20(12), 2018: 3200-3211. https://doi.org/10.1109/TMM.2018.2832604
- [38] KUMARI E., MUKHERJEE S., SINGH P., KUMAR R., Asymmetric color image encryption and compression based on discrete cosine transform in Fresnel domain, Results in Optics 1, 2020: 100005. https:// doi.org/10.1016/j.rio.2020.100005
- [39] RAKHEJA P., SINGH P., VIG R., An asymmetric image encryption mechanism using QR decomposition in hybrid multi-resolution wavelet domain, Optics and Lasers in Engineering 134, 2020: 106177. https://doi.org/10.1016/j.optlaseng.2020.106177
- [40] RODRIGO J.A., ALIEVA T., CALVO M.L., Gyrator transform: Properties and applications, Optics Express 15(5), 2007: 2190-2203. https://doi.org/10.1364/OE.15.002190
- [41] SU Q., WANG G., ZHANG X., LV G., CHEN B., A new algorithm of blind color image watermarking based on LU decomposition, Multidimensional Systems and Signal Processing 29, 2018: 1055-1074. https://doi.org/10.1007/s11045-017-0487-7
- [42] XIONG Y., QUAN C., Hybrid attack free optical cryptosystem based on two random masks and lower upper decomposition with partial pivoting, Optics & Laser Technology 109, 2019: 456-464. https://doi.org/10.1016/j.optlastec.2018.08.033
- [43] WANG Z., BOVIK A.C., SHEIKH H.R., SIMONCELLI E.P., Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing 13(4), 2004: 600-612. https:// doi.org/10.1109/TIP.2003.819861
- [44] GONG L., DENG C., PAN S., ZHOU N., Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform, Optics & Laser Technology 103, 2018: 48-58. https://doi.org/10.1016/j.optlastec.2018.01.007
- [45] XU Q., SUN K., CAO C., ZHU C., A fast image encryption algorithm based on compressive sensing and hyperchaotic map, Optics and Lasers in Engineering 121, 2019: 203-214. https://doi.org/10.1016/j.optlaseng.2019.04.011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-265871f3-9813-4268-8f5e-e3d19b6e2340
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.