Ireneusz Chrabąszcz, Maciej Kierzyk, Janusz Prusak, Paweł Markowski

Analiza strat energii w układzie zasilania wybranego odcinka trakcji elektrycznej DC po jego modernizacji

W artykule przedstawiono wyniki badań symulacyjnych dotyczących strat energii w układzie zasilania dla fragmentu trasy trakcji elektrycznej DC. Do analizy wzięto rzeczywisty odcinek linii kolejowej oraz parametry elektryczne jego układu zasilania przed modernizacją i po modernizacji. W publikacji przedstawiono korzyści wynikłe z ograniczenia strat energii elektrycznej jako jeden z efektów przeprowadzonej modernizacji. Przedstawiono również pozytywne efekty ekologiczne, wynikłe ze zmniejszenia emisji spalin przy wytwarzaniu energii elektrycznej, będące efektem poprawy sprawności nowego układu zasilania dla analizowanego odcinka.

Słowa kluczowe: trakcja elektryczna prądu stałego, straty energii, zasilanie.

Modernizacja linii kolejowych w warunkach PKP, oprócz takich elementów jak np. nawierzchnia, torowisko czy system sterowania ruchem kolejowym, obejmuje również układ zasilania energią elektryczną. Zmiany w systemie zasilania mają na celu poprawę niezawodności układu, jak również wzrost mocy dostępnej dla odbiorów trakcyjnych. Duże znaczenie ma wymiana sieci trakcyjnej w celu przystosowania jej do większych prędkości jazdy pociągów. Autorzy artykułu uważają za bardzo ważny aspekt ocenę zmniejszenia się strat energii elektrycznej w układzie zasilania trakcji elektrycznej prądu stałego w efekcie przeprowadzenia jego modernizacji.

Przedstawiona praca może być przyczynkiem do dyskusji na temat poprawy efektywności energetycznej systemu zasilania trakcji elektrycznej w Polsce poprzez jego unowocześnienie. Autorzy przedstawili w pracy wyniki obliczeń dotyczące wyłącznie strat energii w układzie zasilania od podstacji trakcyjnej do odbioru trakcyjnego. Punktem wyjścia do obliczeń były wyniki przejazdu teoretycznego zamieszczone w pozycji literaturowej [2], na podstawie których, bez żadnych ingerencji w sposób jazdy oraz czas przejazdu pociągu, określono zmiany prądu pobieranego przez pojazd w formie wykresów I=f(s) i I=f(t). Uzyskane drogą symulacji przebiegi prądu stanowią bazę do oceny zmian strat energii w przypadku analizowanej w pracy modernizacji układu zasilania.

System zasilania oraz metody jego modernizacji

W Polsce system zasilania trakcji elektrycznej kolejowej składa się z trzech głównych podsystemów należących do różnych podmiotów. Pierwszym podsystemem jest należąca do energetyki zawodowej część obwodu zasilania od Głównego Punktu Zasilającego (GPZ) do przyłącza na podstacji trakcyjnej (PT). Podsystem ten ma jedynie pośredni wpływ na parametry obwodu, gdyż odpowiada za moc zwarciową na wejściu podstacji i wpływa na jej rezystancję wewnętrzną. W zakresie tego podsystemu modernizację przeprowadza się poprzez zasilanie podstacji trakcyjnej bezpośrednio z linii 110 kV (transformacja jednostopniowa) lub "wzmocnienie" połączenia między GPZ a podstacją trakcyjną. Podsystem ten nie podlega spółkom kolejowym i nie jest w tej pracy uwzględniany przy określaniu strat energii.

Druga część systemu zasilania jest własnością PKP Energetyka S.A. i obejmuje rozmieszczone zwykle co 15–20 km

Rys. 1. Układ zasilania trakcji DC na PKP

Rys. 2. Mapa linii kolejowej – stan przed modernizacją. Zaznaczone stacje, podstacje trakcyjne i kabiny sekcyjne

podstacje trakcyjne (PT) wraz z zasilaczami, jest to podsystem odpowiadający za przetwarzanie energii elektrycznej i jej dostawę do sieci trakcyjnej. Przetwarzanie napięcia w zespołach prostownikowych oraz zastosowanie w obrębie obwodów podstacji układu filtrów i dławików sieciowych wiąże się z powstawaniem spadków napięcia, z którymi są związane straty energii reprezentowane przez zastępczą rezystancję wewnętrzną podstacji. Na rezystancjach kabli zasilaczy oraz kabli powrotnych powstają kolejne spadki napięcia, a w konsekwencji również straty energii w obwodzie. Elementem często występującym w tym fragmencie układu zasilania są kabiny sekcyjne (KS) obniżające spadki napięcia w sieci trakcyjnej. Ten podsystem jest modernizowany poprzez wymianę urządzeń na PT lub całkowitą jego przebudowę.

Podczas aktualnych modernizacji układu zasilania linii kolejowych KS najczęściej są usuwane, a w ich miejsce buduje się nowe podstacje trakcyjne. Konsekwencja wprowadzonych zmian jest wzrost mocy dostępnej dla pojazdów i spadek ilości wyłączeń podstacji wynikłych z ich przeciążenia. Ostatnim podsystemem układu zasilania, będącym własnością firmy PLK S.A., jest sieć trakcyjna (STR), za pomocą której energia jest dostarczana do pojazdów szynowych trakcji elektrycznej. STR, poprzez swoją rozległość, ma również istotny udział w stratach energii elektrycznej. Jest to element układu zasilania szczególnie narażony na zużycie oraz zmienne warunki klimatyczne. Scieranie się przewodu jezdnego (ubytek przekroju) oraz temperatura otoczenia mają istotny wpływ na rezystancje sieci, a co za tym idzie na straty energii w przewodach zasilajacych. Na wielkość strat wpływa także stan sieci powrotnej - szynowej, jest on jednak trudny do określenia. Podczas modernizacji linii kolejowych przewody sieci trakcyjnej wymieniane są na nowe, wprowadza się np. dwa przewody jezdne, zwiększa się przekrój sieci, co znacznie zmniejsza jej rezystancję. Na rys. 1 przedstawiono schematycznie aktualną strukturę zasilania trakcji DC w Polsce.

Obiekt badań

Wyniki przedstawiane w niniejszym artykule uzyskane zostały drogą symulacji na bazie modelu przedstawionego w poprzedniej pracy Autorów [2]. Analizie poddano fragment magistrali E30 na odcinku Trzebinia–Kraków Mydlniki, który w kolejowej ewidencji jest oznaczony numerem 133. Jest to linia o łagodnym profilu będąca głównym szlakiem kolejowym łączącym Śląsk i Małopolskę. Na wymienionym fragmencie linii kolejowej, o długości 31,55 km, znajduje się, łącznie ze stacjami skrajnymi, 6 stacji oraz 2 przystanki kolejowe.

Prędkość maksymalna na linii nie przekracza 100 km/h, a na jej odcinkach jest ustanowione dużo ograniczeń odnośnie prędkości pociągów, nawet do 20 km/h. Ww. odcinek był zasilany siecią trakcyjną typu YskB95-2C charakteryzującą się maksymalną obciążalnością prądową 1 650 A. Na linii stosowano szyny o oznaczeniu S60.

Sieć trakcyjna, oznaczona YskB95-2C, to sieć, która jest zbudowana z jednej linki nośnej wykonanej ze stopu miedzi (krzemo-brązu) o przekroju 95 mm² oraz 2 przewodów jezdnych wykonanych z miedzi twardej o przekroju 100 mm². Litera Y oznacza uelastycznienie sieci w miejscu jej podwieszenia. Rezystancja jednostkowa tej sieci jezdnej wynosi 0,0788 Ω /km, sieci szynowej 2-torowej 0,0055 Ω /km [6]; rezystancja łączna sieci wynosi 0,0843 Ω /km.

Na linii kolejowej znajdują się następujące punkty eksploatacyjne: Stacja Trzebinia, Stacja Dulowa, Przystanek Wola Filipowska, Stacja Krzeszowice, Stacja Rudawa, Stacja Zabierzów, Przystanek Kraków Bussines Park, Przystanek Kraków Mydlniki Wapiennik, Stacja Kraków Mydlniki. Przed modernizacją przy stacjach Trzebinia oraz Rudawa zlokalizowane były PT, a przy stacjach Wola Filipowska i Kraków Mydlniki KS, które zostały w trakcie modernizacji przebudowane na PT. KS w Mydlnikach znajdowała się na odcinku zasilania pomiędzy PT Rudawa a PT Kraków Batowice oraz PT Kraków Płaszów. Stanem pierwotnym był więc układ PT-KS-PT-KS, który został zamieniony na układ PT-PT-PT. Zasilacze wszystkich podstacji mają połączenie z siecią trakcyjną kablem o standardowym przekroju 2 x 500 mm², natomiast kable powrotne to 10 x 240 mm².

Wszystkie PT po modernizacji zostały wyposażone w 2 zespoły prostownikowe PD-16/3,3 – III. W wyniku modernizacji istniejąca sieć trakcyjna na torach głównych zasadniczych oraz torach szlakowych została zastąpiona siecią YC150-2CS150 (jest to sieć zbudowana z dwóch przewodów jezdnych wykonanych z miedzi srebrowej o przekroju 150 mm² i miedzianej liny nośnej o przekroju 150 mm²). Toki szynowe pozostały bez zmian, czyli dalej są to dwa tory z szynami S60. Przebieg trasy został pokazany na rys 2.

Schemat zastępczy obwodu przyjęty do obliczeń

Podstawę do obliczeń stanowi schemat elektryczny dwustronnego układu zasilania przedstawiony na rys. 3, gdzie elementy składowe układu zostały przedstawione w postaci schematu zastępczego złożonego z parametrów elektrycznych. Do obliczeń przyjęto, że podstacje trakcyjne zostaną zamodelowane jako źródła napięciowe *U* (napięcie zasilania przyjęto *U* = 3 450 V (DC), poruszający się pociąg zamodelowano jako idealne źródło prądowe *I*_p (przebieg *I*_p = f(s)). Rezystancje Rwx stanowią rezystancje wewnętrzne podstacji, *R*_{kpx} – rezystancje kabli powrotnych, *R*_{sx} – to rezystancja sumaryczna sieci trakcyjnej i szynowej, a *R*_{zx} – rezystancje kabli zasilaczy, *D*_x, *U*_x – przedstawiają w sposób uproszczony podstację trakcyjną.

Rezystancja sieci trakcyjnej jest w danym momencie jazdy pociągu równa r·x, gdzie x jest drogą pokonaną przez pociąg i jest odległością od poprzedniej podstacji oraz r(L-x), gdzie *L* to odległość międzypodstacyjna.

Układ rozwiązano metodą węzłową przy wykorzystaniu programu Matlab, w wyniku obliczeń otrzymano wartości prądów w poszczególnych gałęziach układu (prądy zasilaczy, prądy podstacji oraz prądy powrotne płynące w tokach szynowych). Na podstawie rozpływu prądów określono spadki napięcia na poszczególnych rezystancjach obwodu oraz napięcie na odbieraku pojazdu. Uzyskane wyniki obliczeń pozwoliły na określenie bilansu energii pobranej i strat energii w układzie zasilania pociągu (rys. 3).

Co przekłada się na straty energii elektrycznej w układzie zasilania zgodnie ze wzorem (1):

$$\Delta E = \Delta E_s + \Delta E_w + \Delta E_{kp} + \Delta E_{zas} = \int_0^T \Delta P dt \qquad (1)$$

gdzie:

 $\overline{\Delta E_s}$ – straty energii na sieci trakcyjnej, ΔE_w – straty energii na rezystancji wewnętrznej podstacji, ΔE_{kp} – straty energii na kablach powrotnych, ΔE_{zas} – straty energii na zasilaczach, ΔP – straty mocy.

Obliczenia wyjściowe

Poniżej przedstawiono straty energii obliczone dla 14 różnych przejazdów teoretycznych prezentujących potencjalne warianty przejazdu pociągu towarowego w obu kierunkach (po 7 przejazdów w każdą stronę). Opis przejazdów:

- A3 przejazd pociągu "tam" pociągiem o masie 1 879 t (jest to masa referencyjna rzeczywistego pociągu);
- A4 przejazd pociągu "powrót" pociągiem o masie 1 879 t;
- C1 pociąg o masie brutto 1 000 t, jazda "tam";
- C2 pociag o masie brutto 1 000 t, jazda "powrót";
- C3 pociag o masie brutto 1 500 t, jazda "tam";
- C4 pociąg o masie brutto 1 500 t, jazda "powrót";
- C5 pociag o masie brutto 2 000 t, jazda "tam":
- C6 pociąg o masie brutto 2 000 t, jazda "powrót";
- C7 pociąg o masie brutto 2 500 t, jazda "tam";
- C8 pociąg o masie brutto 2 500 t, jazda "tam;
- F1 lokomotywa luzem, jazda "tam";

Rys. 3. Schemat zastępczy układu zasilania wraz z lokalizacją podstacji

- F2 lokomotywa luzem, jazda "powrót";
- G1 przejazd z 2 postojami pociągu "tam" pociągiem o masie 1 879 t (masa referencyjna rzeczywistego pociągu);
- G2 przejazd z 2 postojami pociągu "powrót" pociągiem o masie 1 879 t (masa referencyjna rzeczywistego pociągu). Otrzymane wyniki prezentowane są w postaci wyników liczbowych w kWh (tab. 1), rozkładu procentowego bilansu energii (z uwzględnieniem energii pobranej przez pociąg) (tab. 2) oraz rozkładu procentowego samych strat energii (tab. 3). Przed modernizacja średnia strata energii wynosiła 154,33 kWh.

Wyniki uzyskane po modernizacii

Poniżej autorzy prezentują obliczenia dla badanego odcinka linii po przeprowadzonej modernizacji układu zasilania, przy tych samych założeniach jak w punkcie 5, przy przyjęciu, że straty ener-

Tab. 1. Bilans energii przed modernizacją – wynik w procentach [%]

	_		Straty energii na						
	Procent względer strat [% strat]	Energia pobrana przez pociąg	podstacjach (Rw)	sieci trakcyjnej	zasilaczach podstacji	dławiku	zasilaczach kabiny sekcyjnej	kablach powrotnych	Suma strat energi
	Średnia	87,2518	1,4402	8,9615	1,6059	0,0012	0,1294	0,2852	12,4233
	A3	87,0734	1,4379	9,1547	1,5825	0,0012	0,1310	0,2945	12,6017
	A4	87,1826	1,4771	8,9719	1,6171	0,0012	0,1344	0,2909	12,4925
	C1	87,0776	1,4513	9,1087	1,6049	0,0012	0,1293	0,3022	12,5975
	C2	86,8398	1,4768	9,2489	1,6979	0,0012	0,1342	0,2763	12,8354
	C3	87,0776	1,4513	9,1087	1,6049	0,0012	0,1293	0,3022	12,5975
	C4	87,0105	1,4630	9,1299	1,6547	0,0012	0,1327	0,2830	12,6646
	C5	87,0940	1,4356	9,1398	1,5818	0,0012	0,1309	0,2918	12,5811
	C6	87,1396	1,4432	9,0436	1,6384	0,0012	0,1321	0,2771	12,5355
	C7	87,0940	1,4356	9,1398	1,5818	0,0012	0,1309	0,2918	12,5811
	C8	87,6500	1,3971	8,6531	1,5775	0,0012	0,1275	0,2687	12,0251
	F1	87,1323	1,4534	9,0395	1,6286	0,0012	0,1280	0,2923	12,5429
	F2	88,1329	1,4283	8,1270	1,6074	0,0012	0,1155	0,2628	11,5421
	G1	87,2615	1,4207	9,0055	1,5649	0,0012	0,1289	0,2925	12,4136
	G2	87,7594	1,3923	8,5894	1,5395	0,0012	0,1264	0,2669	11,9157

Tab. 2. Procentowy rozkład strat energii – suma strat wynosi 100%

at	Straty energii na							
Procent względem str [% strat]	podstacjach (Rw)	sieci trakcyjnej	zasilaczach podstacji	dławiku	zasilaczach kabiny sekcyjnej	kablach powrotnych		
Średnia	11,5982	72,1236	12,9319	0,0096	1,0411	2,2955		
A3	11,4102	72,6463	12,5577	0,0094	1,0394	2,3369		
A4	11,8237	71,8183	12,9445	0,0094	1,0759	2,3282		
C1	11,5207	72,3053	12,7396	0,0094	1,0265	2,3986		
C2	11,5055	72,0580	13,2286	0,0096	1,0456	2,1528		
C3	11,5207	72,3053	12,7396	0,0094	1,0265	2,3986		
C4	11,5517	72,0904	13,0659	0,0096	1,0475	2,2348		
C5	11,4106	72,6468	12,5731	0,0094	1,0404	2,3197		
C6	11,5125	72,1436	13,0700	0,0098	1,0538	2,2102		
C7	11,4106	72,6468	12,5731	0,0094	1,0404	2,3197		
C8	11,6182	71,9588	13,1185	0,0101	1,0602	2,2342		
F1	11,5874	72,0689	12,9839	0,0096	1,0202	2,3300		
F2	12,3744	70,4118	13,9263	0,0102	1,0009	2,2765		
G1	11,4448	72,5453	12,6060	0,0095	1,0382	2,3563		
G2	11,6843	72,0847	12,9201	0,0101	1,0607	2,2400		

	- B					
Procent wzglę dem energii n wyjściu PT [%	Energia pobra na przez pocia	podstacjach (Rw)	sieci trakcyjnej	zasilaczach	kablach powrotnych	Suma strat energii
Średnia	11,5982	72,1236	12,9319	0,0096	1,0411	2,2955
A3	11,4102	72,6463	12,5577	0,0094	1,0394	2,3369
A4	11,8237	71,8183	12,9445	0,0094	1,0759	2,3282
C1	11,5207	72,3053	12,7396	0,0094	1,0265	2,3986
C2	11,5055	72,0580	13,2286	0,0096	1,0456	2,1528
C3	11,5207	72,3053	12,7396	0,0094	1,0265	2,3986
C4	11,5517	72,0904	13,0659	0,0096	1,0475	2,2348
C5	11,4106	72,6468	12,5731	0,0094	1,0404	2,3197
C6	11,5125	72,1436	13,0700	0,0098	1,0538	2,2102
C7	11,4106	72,6468	12,5731	0,0094	1,0404	2,3197
C8	11,6182	71,9588	13,1185	0,0101	1,0602	2,2342
F1	11,5874	72,0689	12,9839	0,0096	1,0202	2,3300
F2	12,3744	70,4118	13,9263	0,0102	1,0009	2,2765
G1	11,4448	72,5453	12,6060	0,0095	1,0382	2,3563
G2	11,6843	72,0847	12,9201	0,0101	1,0607	2,2400

Tab. 3. Bilans energii po modernizacii - wynik procentowy

Tab. 4. Rozkład strat energii – suma strat wynosi 100%

Procent	Straty energii na							
względem strat [% strat]	podstacjach (Rw)	sieci trakcyjnej	zasilaczach podstacji	kablach powrotnych				
Średnia	51,1505	25,1258	16,2166	7,5071				
A3	50,8664	25,0306	16,4085	7,6945				
A4	51,7658	25,7027	15,4566	7,0749				
C1	50,7202	25,1373	16,4799	7,6626				
C2	50,4248	25,2271	16,5455	7,8025				
C3	50,7202	25,1373	16,4799	7,6626				
C4	50,3673	25,4391	16,4698	7,7238				
C5	50,9030	24,9982	16,4078	7,6909				
C6	49,7441	25,5407	16,7561	7,9591				
C7	50,9030	24,9982	16,4078	7,6909				
C8	50,2780	25,5686	16,4188	7,7346				
F1	53,7088	23,5400	15,7209	7,0304				
F2	51,9860	24,9399	16,2570	6,8171				
G1	50,9940	25,0725	16,3048	7,6287				
G2	52,7250	25,4291	14,9190	6,9269				

gii na kabinach sekcyjnych i dławiku katodowym nie mają miejsca (nowy układ po modernizacji nie posiada tych elementów). Po modernizacji suma strat energii wynosi średnio 89,48 kWh.

Korzyści ekologiczne

Energia elektryczna dostarczana do sieci trakcyjnej przekształcana jest w elektrowniach. Poniżej na wykresach kołowych (rys. 7) przedstawiono porównanie struktury produkcji energii elektrycznej w latach 2015-2016 wyrażonej w GWh oraz procentowo [7].

Struktura produkcji energii elektrycznej w 2016 r. nie uległa znaczącej zmianie w stosunku do roku 2015. Zdecydowana większość, która stanowi 82% (132 552 GWh) wytwarzania, oparta jest na paliwach konwencjonalnych, tj. na węglu kamiennym oraz weglu brunatnym.

Poniżej przedstawiono w postaci tabel oraz wykresów słupkowych niektóre z lotnych produktów spalania wegla kamiennego oraz brunatnego. Obliczenia stechiometrii spalania wykonano

Rys. 4. Bilans energii wyrażony w procentach: a) przed modernizacją, b) po modernizacji

Rys. 5. Straty na elementach układu wyrażone w procentach: a) przed modernizacją; b) po modernizacji

Tab. 5. Wybrane właściwości i lotne produkty spalenia paliw stosowanych w energetyce w odniesieniu do strat energii elektrycznej w sieci przed modernizacją

Źródło energii pierwotnej (Paliwo)	Wartość opałowa paliwa W _d	Masa paliwa m _{pal}	Lotne produkty spalenia paliwa		
[•]	[kJ/kg]	[kg]	[kg CO ₂]	[kg SO ₂]	[kg N ₂]
Węgiel brunatny	20 400	143,339	298,165	4,280	931,552
Węgiel kamienny typu 31	24 500	119,352	294,001	5,345	963,532
Węgiel kamienny typu 33	30 000	97,470	266,512	4,440	912,335
Węgiel kamienny typu 34	32 300	90,530	267,839	4,233	908,295
Węgiel kamienny typu 35	32 400	90,250	273,215	4,220	915,174
Węgiel kamienny typu 38	33 800	86,512	274,941	3,313	907,966

Tab. 6. Wybrane właściwości i lotne produkty spalenia paliw stosowanych w energetyce w odniesieniu do strat energii elektrycznej w sieci przed modernizacją

Źródło energii pierwotnej (Paliwo)	Wartość opałowa paliwa W _d	Masa paliwa m _{pal}	Lotne produkty spalenia paliwa			
[·]	[kJ/kg]	[kg]	[kg CO ₂]	[kg SO ₂]	[kg N ₂]	
Węgiel brunatny	20 400	83,119	171,590	2,463	536,098	
Węgiel kamienny typu 31	24 500	69,209	169,194	3,076	554,502	
Węgiel kamienny typu 33	30 000	56,521	153,375	2,555	525,038	
Węgiel kamienny typu 34	32 300	52,496	154,138	2,436	522,714	
Węgiel kamienny typu 35	32 400	52,334	157,232	2,429	526,673	
Węgiel kamienny typu 38	33 800	50,166	158,225	1,907	522,524	

Rys. 7. Porównanie struktury produkcji energii elektrycznej w latach 2015–2016

w oparciu o dane z literatury [5, 1]. Przyjęto współczynnik nadmiaru powietrza λ na poziomie 1,2 [1], ponieważ jest to wartość uśredniona dla paleniska kotłowego pyłowo-komorowego. Do wykonania obliczeń przyjęto także średnią sprawność całkowitą od wytwórni do pojazdu, która wg [11] mieści się w granicach 0,13 do 0,21. Do obliczeń poniżej przyjęto wartość 0,19. Suma strat energii przed modernizacją wyniosła 154,3282 kWh, a po modernizacji 89,4814 kWh. Na rysunkach 8, 9 i 10 przedstawiono graficznie, w postaci porównawczych wykresów słupkowych, ww. dane.

Podsumowanie

Modernizacja układu zasilania przyniosła wymierne korzyści ekonomiczne i ekologiczne, dzięki zmniejszeniu ilości strat energii w układzie zasilania z 13% do 7%;

Rys. 8. Porównanie ilości CO_2 wynikającej ze strat w sieci przed i po modernizacji

 $\ensuremath{\text{Rys. 9.}}$ Porównanie ilości $\ensuremath{\text{SO}}_2$ wynikającej ze strat w sieci przed i po modernizacji

Rys. 10. Porównanie ilości N₂ wynikającej ze strat w sieci przed i po modernizacji

Biorąc pod uwagę średnią sumę strat energii, tj. przed modernizacją 154,33 kWh, po modernizacji 89,48 kWh, już na 4 przejazdach pociągu w ciągu 1 dnia, licząc okres 30 lat i cenę 1 kWh = 0,28 zł, można oszczędzić 795 281,15 zł.

Bibliografia:

 Biuletyn Urzędu Regulacji Energetyki 02/2017, Urząd Regulacji Energetyki: https://www.ure.gov.pl/pl/publikacje/ biuletyn-urzedu-regula/7027,Biuletyn-Urzedu-Regulacji-Energetyki-2017.html (dostęp 12.11.2017).

- Chrabąszcz I., Prusak J., Kierzyk M., Boczoń K., Evaluation of energy losses in DC railway traction power supply system, "Czasopismo Techniczne" 2016, "Elektrotechnika", Zeszyt 2-E 2016, s. 109–119.
- Drapik S., Kobielski A., Prusak J., Wybrane aspekty zmienności obciążeń kolejowych podstacji trakcyjnych, "Technika Transportu Szynowego" 2010, nr 4.
- Drapik S., Markowski P., Prusak J., Woszczyna, B., Tramwajowe podstacje trakcyjne: wybrane problemy bezpieczeństwa ekologicznego w świetle oceny ich obciążeń, "Logistyka" 2015, nr 4.
- Petela R., Technologia Paliw: odgazowanie, zgazowanie, spalanie dla kierunków energetycznych, Politechnika Śląska im. W. Pstrowskiego, skrypty uczelniane nr 237; Gliwice 1969.
- 6. PKP Polskie Linie Kolejowe S.A., Materiały przetargowe (niepublikowane).
- Polski Komitet Badania Płomieni sekcja Fundacji Czystego Spalania, Instytut Chemicznej Przeróbki Węgla oraz Zespół Elektrociepłowni Wrocław, Instytut Energetyki w Warszawie, Fabryka Kotłów RAFAKO S.A., Instytut Techniki Cieplnej i Mechaniki Płynów Politechniki Wrocławskiej: Spalanie węgla'99, Konferencja Naukowo-Techniczna, Ustroń-Zawodzie, 24–26 marca 1999 r., materiały konferencyjne.
- 8. Stechiometria spalania, Politechnika Wrocławska, Zakład Spalania i Detonacji: http://www.spalanie.pwr.edu.pl (dostęp 12.11.2017 r.).
- Taryfa dla energii elektrycznej 2015, PKP Energetyka S. A. oraz Urząd Regulacji Energetyki: www.pkpenergetyka.pl/pl/files/library/dokumenty_do_pobrania/Taryfa_2015/Taryfa_2015.pdf (dostęp 17.09.2015 r.).
- Wais P., Marketing i aspekty ekonomiczno-finansowe w energetyce, Politechnika Krakowska im. Tadeusza Kościuszki, Wydział Mechaniczny, Kraków 2010.
- 11. Wiśniewski Ś., Termodynamika techniczna, Wydawnictwo WNT, Warszawa 2014.

Autorzy:

dr inż. **Ireneusz Chrabąszcz** – Katedra Trakcji i Sterowania Ruchem, Wydział Inżynierii Elektrycznej i Komputerowej, Politechnika Krakowska im. Tadeusza Kościuszki (PK) mgr inż. **Maciej Kierzyk** – Newag S.A, Kraków

dr inż. **Janusz Prusak** – Katedra Trakcji i Sterowania Ruchem, Wydział Inżynierii Elektrycznej i Komputerowej, Politechnika Krakowska im. Tadeusza Kościuszki

mgr inż. Paweł Markowski - Jacobs Kraków

Analysis of energy losses in the supply system of a selected section of DC electric traction after its modernization

The article presents the results of simulation studies on energy losses in the power system for a fragment of the DC electric traction route. The real section of the railway line and the electrical parameters of its power supply system before and after modernization were taken into consideration. The publication presents the benefits resulting from limiting the loss of electricity as one of the effects of modernization. Positive ecological effects resulting from the reduction of exhaust emissions in the production of electricity were also presented, as a result of improving the efficiency of the new power supply system for the analyzed section.

Keywords: electric traction, energy loss, DC supply system, electricity meters on the railway.

