PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of a uniaxial dielectric elastomer generator

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The widespread use of battery-powered electronic devices creates the need to develop methods to extend their maximum operating time. This can be achieved by using ambient energy, which would otherwise be dissipated. The conversion of energy, usually mechanical energy, into electric energy takes place in energy harvesters. Energy harvester systems based on a dielectric elastomer (DE) are a relatively new field that is being constantly developed. Due to their features, dielectric elastomer generators (DEGs) may complement the currently dominant piezoelectric harvesters. The major feature of employing a hyperelastic material is that it allows relatively large displacements to be utilised for generating energy, which is impossible in the case of piezoceramics. This article presents a DEG designed to operate under uniaxial tensile loads and which has a multilayer structure, describes the general operating principles of a DEG, explains the construction and assembly process of the investigated design and shows the electric circuit necessary to properly direct current flow during the DEG operation. The experimental part consists of two series of tests based on a central composite design (CCD). The objective of the first part was to map a capacitance response surface of the DEG in the selected range of the cyclic mechanical load. The second part concerned the amount of generated energy for the specific load case as a function of operating voltages. The result of the work is the formulation of regression models that allow the characteristics of the presented DEG design to be identified.
Rocznik
Strony
499--506
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Grzybek D, Kata D, Sikora W, Sapiński B, Micek P, Pamuła H, Huebner J, Rutkowski P. Piezoelectric particulate composite for energy harvesting from mechanical vibration. Materials. 2020; 21 (13): 1-14. doi: 10.3390/en15176254
  • 2. Micek P, Grzybek D. Impact of a connection structure of Macro Fiber Composite patches on energy storage in piezoelectric energy har vesting from a rotating shaft. Energies. 2022; 17 (15): 1-15. doi: 10.3390/en15176254
  • 3. Sapiński B, Jastrzȩbski Ł, Kozieł A. Ideal Rectifier Bridge Converting the Harvested Energy of Vibrations into Electric Energy to Power an MR Damper. Acta Mechanica et Automatica. 2020; 14 (4): 198 - 205. doi: 10.2478/ama-2020-0028
  • 4. Rosół M, Sapiński B. Ability of Energy Harvesting Mr Damper to Act as a Velocity Sensor in Vibration Control Systems. Acta Mechanica et Automatica. 2019; 13 (2): 135 - 145. doi: 10.2478/ama-2019-0019
  • 5. Liu L, Zhang J, Luo M, Li B, Tang C, Chen H, Yang Z, Li P, Li D. Electro-pneumatic dielectric elastomer actuator incorporating tunable bending stiffness. Physical Review Research. 2020: 2 (2): 023202. doi: 10.1103/PhysRevResearch.2.023202
  • 6. Berlinger F, Duduta M, Gloria H, Clarke D, Nagpal R, Wood R. A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018.
  • 7. McKay T, Rosset S, Anderson I, Shea H. Dielectric elastomer generators that stack up. Smart Materials and Structures. 2014; 24: 015014. doi: 10.1088/0964-1726/24/1/015014
  • 8. Zhang C, Lai Z, Zhang G, Yurchenko D. Energy harvesting from a dynamic vibro-impact dielectric elastomer generator subjected to rotational excitations. Nonlinear Dynamics. 2020; 102: 1271–1284. doi: 10.1007/s11071-020-05988-7
  • 9. Moretti G, Malara G, Scialò A, Daniele L, Romolo A, Vertechy R, Fontana M, Arena F. Modelling and field testing of a breakwaterintegrated U-OWC wave energy converter with dielectric elastomer generator. Renewable Energy. 2020; (146): 628-642. doi: 10.1016/j.renene.2019.06.077
  • 10. Jean P, Wattez A, Ardoise G, Melis C, van Kessel R, Fourmon A, Barrabino E, Heemskerk J, Queau J. Standing Wave Tube Electro Active Polymer Wave Energy Converter. Proceedings of SPIE - The International Society for Optical Engineering. 2012. doi: 10.1117/12.934222
  • 11. Moretti G, Rosset S, Vertechy R, Anderson I, Fontana M. A Review of Dielectric Elastomer Generator Systems. Advanced Intelligent Systems. 2020;2(10): 2000125. doi: 10.1002/aisy.202000125
  • 12. Goh Y, Akbari S, Vo T, Koh S. Electrically-Induced Actuation of Acrylic-Based Dielectric Elastomers in Excess of 500% Strain. Soft Robotics. 2018; 6 (5): 675-684. doi: 10.1089/soro.2017.0078
  • 13. Araromi O, Gavrilovich I, Shintake J, Rosset S, Shea H. Towards a deployable satellite gripper based on multisegment dielectric elastomer minimum energy structures. Electroactive Polymer Actuators and Devices (EAPAD) 2014. 2014. doi: 10.1117/12.2044667
  • 14. Panigrahi R., Mishra SK. An Electrical Model of a Dielectric Elastomer Generator. IEEE Transactions on Power Electronics. 2018; 33 (4). doi: 10.1109/TPEL.2017.2749329
  • 15. Huang J, Shian S, Suo Z, Clarke D. Maximizing the Energy Density of Dielectric Elastomer Generators Using Equi-Biaxial Loading. Advanced Functional Materials. 2013; 40 (23): 5056-5061. doi: 10.1002/adfm.201300402
  • 16. Gasosoth T, Lianghiranthaworn T, Unai S. A period-based measurement for grounding capacitance meter with Arduino using a relaxation oscillator. Journal of Physics Conference Series. 2020;(1380), doi: 10.1088/1742-6596/1380/1/012074
  • 17. Montgomery DC. Design and Analysis of Experiments. EMEA edition, 9th ed. Hoboken, NJ: John Wiley & Sons; 2017.
  • 18. Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling with Python. Proceedings of the 9th Python in Science Conference. 2010.
  • 19. Lau G, Chen F, Ren Z. Axial force transmission in flexible bowtie dielectric elastomer actuators. Applied Physics Letters. 2022; 120: 012903. doi: 10.1063/5.0072852
  • 20. Sikora W. Adaptation of an energy harvester working in the bending mode to utilize dielectric elastomers. Proceedings of the 22nd International Carpathian Control Conference. 2021. doi: 10.1007/s00707-021-03046-w
  • 21. Chen Y, Kang G, Yuan J, Li T. Experimental study on pure-shear-like cyclic deformation of VHB 4910 dielectric elastomer. Journal of Polymer Research. 2019; 26: 186. doi: 10.1007/s10965-019-1858-6
  • 22. Chen Y, Kang G, Hu Y, Yuan J, Li T., Qu S. Low-cycle electromechanical fatigue of dielectric elastomers: Pure-shear experiments and life-prediction model. International Journal of Fatigue. 2021; 148: 106220. doi: 10.1016/j.ijfatigue.2021.106220
  • 23. Bergström J. Mechanics of solid polymers: theory and computational modeling, San Diego, USA: William Andrew; 2015.
  • 24. Srivastava AK, Basu S. Modelling the performance of devices based on thin dielectric elastomer membranes. Mechanics of Materials. 2019; 137. doi: 10.1016/j.mechmat.2019.103136
  • 25. Khajehsaeid H., Baghshomal Azar H. Influence of stretch and temperature on the energy density of dielectric elastomer generators. Applied Mathematics and Mechanics. 2019; 40: 1547–1560. doi:10.1007/s10483-019-2539-7
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26503398-85df-4aba-9dbc-8d8de5d751f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.