PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Tiny 2.4 GHz Monopole Water Antenna

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We designed, fabricated, and evaluated a monopole water antenna (WA) filled with pure water. A 2.4 GHz patch antenna (PA) was used for measurement comparison, and the current density distribution and 3D field strength radiation distribution and reflection coefficient of the PA had a fundamental mode and a higher-order mode at 3.5 GHz, whose polarization was 90 degrees different. The 2.4 GHz monopole WA could receive only the fundamental mode of the PA. The 3.5 GHz WA could receive the higher-order mode of the PA by rotating the WA by 90 degrees. The transmission coefficient of the 2.4 GHz WA decreased with the square of the spacing, similar to the spatial propagation characteristics of electromagnetic waves. Almost the same results could be expected if planar or three-dimensional antennas were used instead of monopole electrodes.
Twórcy
autor
  • GLEX, Yokohama, Japan
autor
  • Information and Communication System Engineering, Dept., National Institute of Technology, Okinawa College, Nago, Japan
Bibliografia
  • [1] S. W. Maley and R. J. King, “Impedance of a Monopole Antenna With a Circular Conducting-Disk Ground System on the Surface of a Lossy Half Space l,” Journal of Research of the Notional Bureau of Standards - D. Radio Propagation, vol. 65D, no.2, pp. 183-188, 1961.
  • [2] G. Ruvio, D. Gaetano, M. J. Ammann, and P. McEvoy, “Antipodal Vivaldi Antenna for Water Pipe Sensor and Telemetry,” Hindawi Publishing Corporation International Journal of Geophysics, vol. 2012, article ID 916176, 8 pages, 2012.
  • [3] H. Changzhou, S. Zhongxiang, “High efficiency seawater monopole antenna for maritime wireless communications,” IEEE Transactions on antennas and propagation, 62(12), pp. 5968-5973. pp. 1-9, 2013. https://doi.org/10.1109/TAP.2014.2360210
  • [4] E.M. Cheng, M. Fareq, Shahriman A. B., Mohd Afendi R., Y. S. Lee, S. F. Khor, W.H. Tan1, M. N. N. Fazli., A. Z. Abdullah, and M. A. Jusoh, “Development of Microstrip Patch Antenna Sensing System for Salinity and Sugar Detection in Water,” International Journal of Mechanical and Mechatronics Engineering, vol. 14, no. 05, pp. 31-36, 2014.
  • [5] L. Xing, Y. Huang, Y. Shen, S. Aliaafreh, Q. Xu, and R. Alrawashdeh, “Further investigation on water antennas,” IET Microw. Antennas Propag., vol. 9, is. 8, pp. 735-741, 2015.
  • [6] Y. Li and K. Luk, “A Water Dense Dielectric Patch Antenna,” IEEE Open Access Journal, vol. 3, pp. 274-280, 2015. https://doi.org/10.1109/ACCESS.2015.2420103
  • [7] X. Yan and X. Zhang, “Decoupling and matching network for monopole antenna arrays in ultrahigh field MRI,” Quant Imaging Med Surg., 5(4), pp. 546-551, 2015. https://doi.org/10.3978/j.issn.2223-4292.2015.07.06
  • [8] L. Xing, Y. Huang, Q. Xu, and S. Aliaafreh, “A Wideband Hybrid Water Antenna with an F-Shaped Monopole,” IEEE Access, 2461443, pp. 1179-1187, 2015. https://doi.org/10.1109/ACCESS.2015.2461443
  • [9] M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization,” Applied Physics Letters, 108, 014102, pp. 1-9, 2016.
  • [10] M. T. Islam, M. N. Rahman, M. S. J. Singhi, and M. Samsuzzaman, “Detection of Salt and Sugar Contents in Water on the Basis of Dielectric Properties Using Microstrip Antenna-Based Sensor,” IEEE Access, vol. 6, pp. 4118-4126, 2017.
  • [11] T. D. Paillette, A. Gaugue, E. Parlier, and S. Dardenne, “Antenna Design for Underwater Wireless Telemetry Systems,” 11th European Conference on Antennas and Propagation (EUCAP), EuCAP. 2017.928513, 2017. https://doi.org/10.23919/EuCAP.2017.7928513
  • [12] V. Hemamalini, R. K. Prathesha, M. M. Sumithra, and P. Nandhini, “Design of Submarine Monopole Antenna For Data Transmission,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering,vol. 6, iss. 3, pp.1649-1653, 2017.
  • [13] K. O. Joseph, E. Karthika, M. Keerthika, and G. Mugashini, “High-Efficiency Sea-Water Monopole Antenna for Maritime Wireless Communications,” International Journal of Scientific Development and Research (IJSDR), vol. 2, iss. 4, pp. 104-108, 2017. https://doi.org/10.1109/TAP.2014.2360210
  • [14] Z. P. Zhong, J. J. Liang, G. L. Huang, and T. Yuan, “A 3D-Printed Hybrid Water Antenna with Tunable Frequency and Beamwidth,” Electronics 2018, 7, 230; electronics 7100230, pp. 1-13, 2018.
  • [15] X. Chen, “Research on Simulation and Calculation of a New Reconfigurable Sea Water Antenna,” Advances in Computer Science Research, vol. 86, pp. 334-339, 2018.
  • [16] I. I. Smolyaninov, Q. Balzano, C. C. Davis, and D. Young, “Surface Wave Based Underwater Radio Communication,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 12, pp. 2503-2507, 2018. https://doi.org/10.1109/LAWP.2018.2880008
  • [17] C. Song, E. Bennett, J. Xiao, Q. Hua, L. Xing, and, Y. Huang, “Compact Ultra-Wideband Monopole Antennas Using Novel Liquid Loading Materials,” IEEE Open Access Journal, vol. 7, pp. 49039-49047, 2019.
  • [18] N. H Moktar, W. I Roseli, M. T Ali, and N. H. A. Rahman, “Analysis of Water Dense Dielectric Patch Antenna utilizing Six Different Waters for Wireless Applications,” 2019 International Symposium on Antennas and Propagation (ISAP), 19284192, 2019.
  • [19] L. Xing, J. Zhu, Q. Xu, D. Yan, Y. Zhao, “A Circular Beam-steering Antenna with Parasitic Water Reflectors,” IEEE Antennas and Wireless Propagation Letters, vol.18, is. 10, pp. 2140-2144, 2019. https://doi.org/10.1109/LAWP.2019.2938872
  • [20] D. T. Phan and C. W. Jung, “Optically transparent sea-water monopole antenna with high radiation efficiency for WLAN applications,” Electronics Letters, vol. 55, no. 24, pp.1269-1271, 2019. https://doi.org/10.1049/el.2019.2664
  • [21] J. Sun and K. Luk, “A Compact-Size Wideband Optically-Transparent Water Patch Antenna Incorporating an Annular Water Ring,” IEEE Access, vol.7, pp.122964-122971, 2019. https://doi.org/10.1109/ACCESS.2019.2936458
  • [22] S. L. Baika, S. S. Thakur, and V. C. Kshirsagar, “Printed Ring Monopole Antenna for Medical Application,” JETIR, vol. 6, is. 5, pp. 747-749, 2019.
  • [23] J. Majcher, M. Kafarski, A. Wilczek, A. Woszczyk, A. Szypowska, A. Lewandowski, J. Szerement, and W. Skierucha, “Application of a Monopole Antenna Probe with an Optimized Flange Diameter for TDR Soil Moisture Measurement,” Sensors, 20, 2374, pp. 1-13, 2020. https://doi.org/10.3390/s20082374
  • [24] R. E. Jacobsen, A. V. Lavrinenko, and S. Arslanagic, “A Water-Based Huygens Dielectric Resonator Antenna,” IEEE Open Access Journal and Propagation, pp. 493-499, 2020. https://doi.org/10.1109/OJAP.2020.3021802
  • [25] Y. Huang, L. Xing, C. Song, S. Wang, and F. Elhouni, “Liquid Antennas: Past, Present and Future,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp.473-487, 2021. https://doi.org/10.1109/OJAP.2021.3069325
  • [26] C. Hua, S. Wang, Z. Hu, Z. Zhu, Z. Ren, W. Wu, and Z. Shen, “Reconfigurable Antennas Based on Pure Water,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 623-632, 2021. https://doi.org/10.1109/OJAP.2021.3079353
  • [27] K. Chinen, S. Nakamoto, and I. Kinjo, “Two-port Equivalent Circuits Deduced from S-parameter Measurements of NaCl Solutions,” IETE Journal of Research, 05 Jun. IF 1.877, pp. 1-9, 2022. https://doi.org/10.1080/03772063.2022.2081264
  • [28] Axiem, “awr-awr-axiem-analysis,” https://www.cadence.com/home/tools/system-analysisrf-microwave-design/awr-axiem-analysis.html
  • [29] Sodex, “Polarities of Solvents,” https://wwww.shodex.com/ja/dc/06/0117.html
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2641a606-61d6-4e9d-b060-6ae6490f9f92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.