Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, a family of delay differential equations with pseudo compact almost automorphic coefficients is considered. By introducing a concept of Bi-pseudo compact almost automorphic functions and establishing the properties of these functions, and using Halanay’s inequality and Banach fixed point theorem, some results on the existence, uniqueness and global exponential stability of pseudo compact automorphic solutions of the equations are obtained. Our results extend some recent works. Moreover, an example is given to illustrate the validity of our results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240074
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- School of Science, Xihua University, Chengdu, 610039, Sichuan, P. R. China
- Department of Mathematics, Sichuan University, Chengdu, 610064, Sichuan, P. R. China
autor
- Department of Mathematics, Sichuan University, Chengdu, 610064, Sichuan, P. R. China
Bibliografia
- [1] D. Békollè, K. Ezzinbi, S. Fatajou, D. E. Houpa Danga, and F. M. Béssémè, Attractiveness of pseudo almost periodic solutions for delayed cellular neural networks in the context of measure theory, Neurocomputing 435 (2021), 253–263, DOI: https://doi.org/10.1016/j.neucom.2020.12.047.
- [2] F. Cherif, Pseudo almost periodic solution of Nicholson’s blowflies model with mixed delays, Appl. Math. Model. 39 (2015), no. 17, 5152–5163, DOI: https://doi.org/10.1016/j.apm.2015.03.043.
- [3] J. F. Cao and Z. T. Huang, Asymptotic almost periodicity of stochastic evolution equations, Bull. Malays. Math. Sci. Soc. 42 (2019), 2295–2332, DOI: https://doi.org/10.1007/s40840-018-0604-2.
- [4] L. Duan and L. Huang, Pseudo almost periodic dynamics of delay Nicholson’s blowflies model with a linear harvesting term, Math. Methods Appl. Sci. 38 (2016), no. 6, 1178–1189, DOI: https://doi.org/10.1002/mma.3138.
- [5] C. X. Huang, H. D. Yang, and J. D. Cao, Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), no. 4, 1259–1272, DOI: https://doi.org/10.3934/dcdss.2020372.
- [6] Z. D. Huang, S. H. Gong, and L. J. Wang, Positive almost periodic solution for a class of Lasota-Wazewska model with multiple time-varying delays, Comput. Math. Appl. 61 (2011), no. 4, 755–760, DOI: https://doi.org/10.1016/j.camwa.2010.12.019.
- [7] F. C. Kong, Q. X. Zhu, K. Wang, and J. J. Nieto, Stability analysis of almost periodic solutions of discontinuous BAM neural networks with hybrid time-varying delays and D operator, J. Franklin Inst. 358 (2020), no. 18, 11605–11637, DOI: https://doi.org/10.1016/j.jfranklin.2019.09.030.
- [8] J. Y. Shao, Pseudo almost periodic solutions for a Lasota-Wazewska model with an oscillating death rate, Appl. Math. Lett. 43 (2015), 290–95, DOI: https://doi.org/10.1016/j.aml.2014.12.006.
- [9] C. J. Xu, M. X. Liao, and Y. C. Pang, Existence and convergence dynamics of pseudo almost periodic solutions for Nicholson’s blowflies model with time-varying delays and a harvesting term, Acta Appl. Math. 146 (2016), no. 1, 95–112, DOI: https://link.springer.com/article/10.1007/s10440-016-0060-7.
- [10] X. X. Yu and Q. R. Wang, Weighted pseudo-almost periodic solutions for shunting inhibitory cellular neural networks on time scales, Bull. Malays. Math. Sci. Soc. 42 (2019), 2055–2074, DOI: https://doi.org/10.1007/s40840-017-0595-4.
- [11] S. Abbas, S. Dhama, M. Pinto, and D. Sepúlveda, Pseudo compact almost automorphic solutions for a family of delayed population model of Nicholson type, J. Math. Anal. Appl. 495 (2021), no. 1, 124722, DOI: https://doi.org/10.1016/j.jmaa.2020.124722.
- [12] C. Y. Zhang, Almost Periodic Type Functions and Ergodicity, Kluwer Academic/Science Press, Beijing, 2003.
- [13] A. Coronel, C. Maulén, M. Pinto, and D. Sepúlveda, Almost automorphic delayed differential equations and Lasota-Wazewska model, Discrete Contin. Dyn. Syst. 37 (2017), no. 4, 1959–1977, DOI: https://doi.org/10.3934/dcds.2017083.
- [14] S. Bochner, Uniform convergence of monotone sequences of functions, Proc. Natl. Acad. Sci. USA, 47 (1961), no. 4, 582–585, DOI: https://doi.org/10.1073/pnas.47.4.582.
- [15] T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer International Publishing AG, Cham, 2013.
- [16] G. M. N’Guérékata, Almost Periodic and Almost Automorphic Functions in Abstract Spaces, Springer International Publishing AG, Cham, 2021.
- [17] T. J. Xiao, J. Liang, and J. Zhang, Pseudo almost automorphic solutions to semilinear differential equations in banach spaces, Semigroup Forum 76 (2008), no. 3, 518–524, DOI: https://doi.org/10.1007/s00233-007-9011-y.
- [18] B. Es-sebbar, Almost automorphic evolution equations with compact almost automorphic solutions, C. R. Math. Acad. Sci. Paris 354 (2016), no. 11, 1071–1077, DOI: https://doi.org/10.1016/j.crma.2016.10.001.
- [19] E. H. Ait Dads, F. Boudchich, and B. Es-sebbar, Compact almost automorphic solutions for some nonlinear integral equations with time-dependent and state-dependent delay, Adv. Differential Equations 2017 (2017), no. 1, 1–21, DOI: https://doi.org/10.1186/s13662-017-1364-2.
- [20] H. X. Li, F. L. Huang, and J. Y. Li, Composition of pseudo almost-periodic functions and semilinear differential equations, J. Math. Anal. Appl. 255 (2001), no. 2, 436–446, DOI: https://doi.org/10.1006/jmaa.2000.7225.
- [21] T. J. Xiao, X. X. Zhu, and J. Liang, Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications, Nonlinear Anal. 70 (2009), no. 11, 4079–4085.
- [22] F. X. Zheng and H. X. Li, Pseudo almost automorphic mild solutions to non-autonomous in the “strong topology”, Banach J. Math. Anal. 16 (2022), no. 1, 14, DOI: https://doi.org/10.1007/s43037-021-00165-3.
- [23] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
- [24] L. Duan, L. H. Huang, and Y. M. Chen, Global exponential stability of periodic solutions to a delay Lasota-Wazewska model with discontinuous harvesting, Proc. Amer. Math. Soc. 144 (2016), no. 2, 561–573, DOI: https://doi.org/10.1090/proc12714.
- [25] R. D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, New York, 1977.
- [26] A. M. Fink, Extensions of almost automorphic sequences, J. Math. Anal. Appl. 27 (1969), no. 3, 519–523, DOI: https://doi.org/10.1016/0022-247X(69)90132-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-263fcee9-c118-4649-b065-dcecbe4203f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.