PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Peridynamics compatible with boundary conditions and its verification in plane elastic problems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the peridynamic (PD) theory established by Silling and his collaborates, the equation of motion is incompatible with the traction boundary conditions. In order to impose boundary conditions, a technique used is to set a fictitious boundary layer and transforming traction into a body force. This technique is easy to operate, but it is difficult to adapt to complex boundary constraints. To solve this problem, the new peridynamic governing equations with boundary conditions (PDBC) are introduced and simplified. In PDBC, the influence of the boundary conditions is confined to a boundary layer with finite thickness, by which, the surface correction can be shunned. A nonlinear implicit solver for PDBC is implemented. This solver is used to simulate the plane stress problems. The elastic deformations of a rectangular plate under three different boundary conditions, i.e., traction, displacement and mixed boundary conditions, are solved based on the bond-based and ordinary state-based constitutive models. Comparison of computational results between PDBC, the classical elastic theory and the original PD verifies the applicability and accuracy of PDBC and the implicit algorithm.
Rocznik
Strony
3--38
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Bibliografia
  • 1. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48, 175–209, 2000.
  • 2. S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 151–184, 2007.
  • 3. S.A. Silling, M. Zimmermann, R. Abeyaratne, Deformation of a peridynamic bar, Journal of Elasticity, 73, 173–190, 2003.
  • 4. S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, 1526–1535, 2005.
  • 5. P. Seleson, M.L. Parks, On the role of the influence function in the peridynamic theory, International Journal for Multiscale Computational Engineering, 9, 689–706, 2011.
  • 6. S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory, Journal of Elasticity, 93, 13–37, 2008.
  • 7. F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials, International Journal of Fracture, 176, 215–222, 2012.
  • 8. R.W. Macek, S.A. Silling, Peridynamics via finite element analysis, Finite Elements in Analysis and Design, 43, 1169–1178, 2007.
  • 9. E. Madenci, M. Dorduncu, A. Barut, N. Phan, Weak form of peridynamics for nonlocal essential and natural boundary conditions, Computer Methods in Applied Mechanics and Engineering, 337, 598–631, 2018.
  • 10. E. Madenci, M. Dorduncu, N. Phan, X. Gu, Weak form of bond-associated nonordinary state-based peridynamics free of zero energy modes with uniform or non-uniform discretization, Engineering Fracture Mechanics, 218, 106613, 2019.
  • 11. Z.X. Huang, Revisiting the peridynamic motion equation due to characterization of boundary conditions, Acta Mechanica Sinica, 35, 972–980, 2019.
  • 12. Z. Zhou, M. Yu, X. Wang, Z. Huang, Peridynamic analysis of 2-dimensional deformation and fracture based on an improved technique of exerting traction on boundary surface, Archives of Mechanics, 74, 441–461, 2022.
  • 13. M. Yu, Z. Zhou, Z. Huang, Traction-associated peridynamic motion equation and its verification in the plane stress and fracture problems, Materials, 16, 2252, 2023.
  • 14. F. Scabbia, M. Zaccariotto, U. Galvanetto, A novel and effective way to impose boundary conditions and to mitigate the surface effect in state-based peridynamics, International Journal for Numerical Methods in Engineering, 122, 5773–5811, 2021.
  • 15. F. Scabbia, M. Zaccariotto, U. Galvanetto, A new method based on Taylor expansion and nearest-node strategy to impose Dirichlet and Neumann boundary conditions in ordinary state-based peridynamics, Computational Mechanics, 70, 1–27, 2022.
  • 16. O. Weckner, G. Brunk, M.A. Epton, S.A. Silling, E. Askari, Green’s functions in non-local three-dimensional linear elasticity, Proceedings of the Royal Society A, 465, 3463–3487, 2009.
  • 17. Y. Mikata, Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod, International Journal of Solids and Structures, 49, 2887–2897, 2012.
  • 18. Y. Hu, Peridynamic modeling of fiber-reinforced composites with polymer and ceramic matrix, Doctoral dissertation, University of Arizona, 2017.
  • 19. S.A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, Computational Fluid and Solid Mechanics, 641–644, 2003.
  • 20. B. Kilic, E. Madenci, An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theoretical and Applied Fracture Mechanics, 53, 194–204, 2010.
  • 21. Y.D. Ha, An extended ghost interlayer model in peridynamic theory for high-velocity impact fracture of laminated glass structures, Computers and Mathematics with Applications, 80, 744–761, 2020.
  • 22. M.L. Parks, P. Seleson, S.J. Plimpton, S.A. Silling, Peridynamics with LAMMPS: a user guide v 0.3 beta, Sandia Report, 2011–8253, 2011.
  • 23. J.A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics, Sandia Report, SAND2011-3166, 2011.
  • 24. J.A. Mitchell, A non-local, ordinary-state-based viscoelasticity model for peridynamics, Sandia Report, SAND2011-8064, 2011.
  • 25. N.A. Hashim, W.M. Coombs, C.E. Augarde, G. Hattori, An implicit non-ordinary state-based peridynamics with stabilised correspondence material model for finite deformation analysis, Computer Methods in Applied Mechanics and Engineering, 371, 113304, 2020.
  • 26. L. Lopez, S.F. Pellegrino, A space-time discretization of a nonlinear peridynamic model on a 2D lamina, Computers and Mathematics with Applications, 116, 161–175, 2022.
  • 27. W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures, Nuclear Engineering and Design, 237, 1250–1258, 2007.
  • 28. X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Computer Methods in Applied Mechanics and Engineering, 200, 1237–1250, 2011.
  • 29. M. Zingales, M.D. Paola, G. Inzerillo, The finite element method for the mechanically based model of non-local continuum, International Journal for Numerical Methods in Engineering, 86, 1558–1576, 2011.
  • 30. F. Han, G. Lubineau, Y. Azdoud, A. Askari, A morphing approach to couple statebased peridynamics with classical continuum mechanics, Computer Methods in Applied Mechanics and Engineering, 301, 336–358, 2016.
  • 31. Y. Azdoud, F. Han, G. Lubineau, The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture, Computational Mechanics, 54, 711–722, 2014.
  • 32. Z.B. Li, F. Han, The peridynamics-based finite element method (PeriFEM) with adaptive continuous/discrete element implementation for fracture simulation, Engineering Analysis with Boundary Elements, 146, 56–65, 2023.
  • 33. S.A. Silling, R.B. Lehoucq, Peridynamic theory of solid mechanics, Advances in Applied Mechanics, 44, 73–168 2010.
  • 34. F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling, Handbook of Peridynamic Modeling, CRC Press, Boca Raton, 2016.
  • 35. E. Madenci, E. Oterkus, Peridynamic Theory and Its Applications, Springer, New York, 2014.
  • 36. E. Madenci, S. Oterkus, Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening, Journal of the Mechanics and Physics of Solids, 86, 192–219, 2016.
  • 37. B. Kilic, Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials, Doctoral dissertation, University of Arizona, 2008.
  • 38. M.L. Parks, D.J. Littlewood, J.A. Mitchell, S.A. Silling, Peridigm users’ guide v1.0.0, Sandia Report, 2012-7800, 2012.
  • 39. D.J. Littlewood, Roadmap for peridynamic software implementation, Sandia Report, 2015-9013, 2015.
  • 40. F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, J. Xu, Convergence, adaptive refinement, and scaling in 1D peridynamics, International Journal for Numerical Methods in Engineering, 77, 852–877, 2009.
  • 41. T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, 2nd ed., Ringgold Inc, Beaverton, 2014.
  • 42. S.A. Silling, Linearized theory of peridynamic states, Journal of Elasticity, 99, 85–111, 2010.
  • 43. T. Bode, C. Weissenfels, P. Wriggers, Peridynamic Galerkin method: an attractive alternative to finite elements, Computational Mechanics, 70, 723–743, 2022.
  • 44. D. Behera, P. Roy, S.V.K. Anicode, E. Madenci, B. Spencer, Imposition of local boundary conditions in peridynamics without a fictitious layer and unphysical stress concentrations, Computer Methods in Applied Mechanics and Engineering, 393, 114734, 2022.
  • 45. Z.X. Huang, Peridynamic equation with boundary traction, Journal of Mechanics of Materials and Structures, 18, 675–683, 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-263d2ec1-7ce7-4959-89bd-37e9538ef822
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.