PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and Structural Properties of Poly(Phenylethylene) Systems: a Preliminary Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structural and mechanical properties of various types of poly(phenylacetylene) crystalline networked polymers which stack in the third direction in a graphite-like manner have been the subject of extensive research over the past few years. These studies have suggested that depending on the particular manner of substitution of the phenyls, it is possible to achieve some very interesting mechanical properties, which include, in some cases, negative Poisson's ratio (NPR) andór negative linear compressibility (NLC). The current study investigated how alternatives to these systems can be designed, and specifically tailor-made to exhibit desirable anomalous properties, such as NPR and NLC, through the replacement of the acetylene chains with ethylene chains, so as to produce the poly(phenylethylene) equivalents. Using force field-based simulations, via the use of the polymer consistent force-field (PCFF) it was noted that, to a first approximation, these systems mirror some of the analogous properties exhibited by their poly(phenylacetylene) counterparts. In particular, poly(phenylethylene) systems built from 1234- and 1245-substituted phenyls exhibited negative Poisson's ratios, with the latter also exhibiting negative linear compressibility. This anomalous behaviour, mirrors, to some extent, that exhibited by their poly(phenylacetylene) counterparts, albeit some differences were noted, such as a reduction in the degrees of auxeticity. It was also noted that the poly(phenylethylene) systems modelled here tend to stack in the third direction, in a different manner than their poly(phenylacetylene) analogues, which difference is likely to be the factor for such reduction in auxeticity.
Rocznik
Strony
269--301
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
  • Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
  • etamaterials Unit, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
Bibliografia
  • [1] Evans K E, Nkansah M A, Hutcherson I J and Rogers S C 1991 Molecular Network Design, 353, 6340124 doi: https://doi.org/10.1038/353124a0
  • [2] Evans K E, Nkansah M A and Hutchinson I J 1994 Auxetic Foams: Modelling Negative Po-isson’s Ratios,Acta Metall. Mater. doi: https://doi.org/10.1016/0956–7151(94)90145–7
  • [3] Evans K E, Alderson A and Christian F R 1995 Auxetic Two-Dimensional Polymer Networks. An Example of Tailoring Geometry for Specific Mechanical Properties, J. Chem.Soc. Faraday Trans. 91(16)2671 doi: https://doi.org/10.1039/ft9959102671
  • [4] Grima J N and Evans K E 2000 Auxetic Behavior from Rotating Squares, 19, 171563 doi: https://doi.org/10.1023/A:1006781224002
  • [5] Grima J N, Farrugia P-S, Gatt R and Attard D 2008 On the Auxetic Properties of Rotating Rhombi and Parallelograms: A Preliminary Investigation,Phys. Status SolidiBasic Res.245(3) doi: https://doi.org/10.1002/pssb.200777705
  • [6] Grima J N, Oliveri L, Attard D, Ellul B, Gatt R, Cicala G and Recca G 2010 HexagonalHoneycombs with Zero Poisson’s Ratios and Enhanced Stiffness, Adv. Eng. Mater.12(9) doi: https://doi.org/10.1002/adem.201000140
  • [7] Grima J N, Chetcuti E, Manicaro E, Attard D, Camilleri M, Gatt R and Evans K E2012 On the Auxetic Properties of Generic Rotating Rigid Triangles, 468, 2139810doi: https://doi.org/10.1098/rspa.2011.0273
  • [8] Grima J N, Zerafa C and Brincat J-P 2014 Development of Novel Poly (Phenylacetylene) Network Polymers and Their Mechanical Behaviour,Phys. Status Solidi Basic Res. 251(2) doi: https://doi.org/10.1002/pssb.201384254
  • [9] Grima J N, Degabriele E P and Attard D 2016 Nano Networks Exhibiting Negative Linear Compressibility, Phys. Status Solidi Basic Res. 253(7) doi: https://doi.org/10.1002/pssb.201600276
  • [10] Grima J N and Zerafa C 2013 On the Effect of Solvent Molecules on the Structure and Mechanical Properties of Organic Poly(phenylacetylene) Auxetic Re-Entrant NetworkPolymers, 250,10 doi: https://doi.org/10.1002/pssb.201384245
  • [11] Trapani L, Gatt R, Mizzi L and Grima J N 2015 Mechanical Properties of 2D Flexyneand Reflexyne Poly(phenylacetylene) Networks: A Comparative Computer Studies withVarious Force-Fields, TASK Quart. 19(3)237
  • [12] Grima-Cornish J N, Grima J N and Evans K E 2017 On the Structural and MechanicalProperties of Poly(Phenylacetylene) Truss-Like Hexagonal Hierarchical Nanonetworks, Phys. status solidi 254(12)1700190 doi: https://doi.org/10.1002/pssb.201700190
  • [13] Caruana-Gauci R, Degabriele E P, Attard D and Grima J N 2018 Auxetic MetamaterialsInspired from Wine-Racks, J. Mater. Sci. 53(7)5079doi: https://doi.org/10.1007/s10853–017–1875-y
  • [14] Degabriele E P, Attard D, Grima-Cornish J N, Caruana-Gauci R, Gatt R, Evans K Eand Grima J N 2019 On the Compressibility Properties of the Wine-Rack-Like Car-bon Allotropes and Related Poly(Phenylacetylene) Systems,Phys. status solidi 256(1)1800572 doi: https://doi.org/10.1002/pssb.201800572
  • [15] Degabriele E P, Grima-Cornish J N, Attard D, Caruana-Gauci R, Gatt R, Evans K Eand Grima J N 2017 On the Mechanical Properties of Graphyne, Graphdiyne, and Other Poly(Phenylacetylene) Networks, Phys. status solidi 254(12)1700380doi: https://doi.org/10.1002/pssb.201700380
  • [16] Hwang M J, Stockfisch T P and Hagler a T 1994 Derivation of Class-Ii Force-Fields 2. Derivation and Characterization of a Class-Ii Force-Field, Cff 93, for the Alkyl Functional-Group and Alkane Molecules,J. Am. Chem. Soc. 116(6)2515 doi: https://doi.org/10.1021/ja00085a036
  • [17] Maple J R, Hwang M-J, Stockfisch T P, Dinur U, Waldman M, Ewig C S and Hagler A T 1994 Derivation of Class II Force Fields. I. Methodology and Quantum Force Field for the Alkyl Functional Group and Alkane Molecules, J. Comput. Chem. 15(2)162 doi: https://doi.org/10.1002/jcc.540150207
  • [18] Rappe A K and Goddard W A 1991 Charge Equilibration for Molecular DynamicsSimulations, J. Phys. Chem. 95(8)3358 doi: https://doi.org/10.1021/j100161a070
  • [19] Grima J N, Jackson R, Alderson A and Evans K E 2000 Do Zeolites Have NegativePoisson’s Ratios?,Adv. Mater. 12(24)1912 doi: https://doi.org/10.1002/1521–4095(200012)12:24<1912::AID-ADMA1912>3.0.CO;2–7
  • [20] Ewald P P 1921 Die Berechnung Optischer Und Elektrostatischer Gitterpotentiale, 369253 doi: https://doi.org/10.1002/andp.19213690304
  • [21] Nosé S 1991 Constant Temperature Molecular Dynamics Methods,1031
  • [22] Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A and Haak J R 1984 Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys. 81 3684doi: https://doi.org/10.1063/1.448118
  • [23] Grima J N and Evans K E 2006 Auxetic Behavior from Rotating Triangles, 41, 103193doi: https://doi.org/10.1007/s10853–006–6339–8
  • [24] Masters I G and Evans K E 1996 Models for the Elastic Deformation of Honeycombs, 35, 4403 doi: https://doi.org/10.1016/S0263–8223(96)00054–2
  • [25] Nye J F 1957 Physical Properties of Crystals: Their Representations by Tensors and Matrices
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-263cfc9c-cf90-48b4-aadf-74a89f072f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.