PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of particle breakage on bulk density of dynamically compacted coarse aggregates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ pękania ziaren na gęstość objętościową dynamicznie zagęszczanych kruszyw grubych
Języki publikacji
EN PL
Abstrakty
EN
The article presents the first discrete element method (DEM) simulations of dynamic compaction in the Proctor test. The aim of the simulations was to analyze the influence of particle breakage on the density of intensely compacted granular assembly. Results from simulations and laboratory tests were compared. Simulations with non-breakable aggregates enabled separation of the influence of change in particle size distribution and particle rearrangement. Both factors play an essential role in increasing the bulk density of the sample in the case of the tested (gap-graded) aggregate. Simulations with breakable particles reproduce the laboratory tests results better, both qualitatively and quantitatively. The conclusions provide a better understanding of the aggregate compaction process, which is crucial for developing novel compaction strategies and minimizing the environmental impact of the construction process.
PL
W artykule przedstawiono pierwszą przeprowadzoną metodą elementów dyskretnych (DEM) symulację dynamicznego zagęszczania w badaniu Proctora. Celem wykonanych symulacji było znalezienie odpowiedzi na pytanie, w jaki sposób, w jaki sposób pękanie ziaren wpływa na gęstość intensywnie zagęszczanej próbki materiału ziarnistego. Porównano wyniki symulacji i badań laboratoryjnych. Symulacje z ziarnami niełamliwymi pozwoliły na wyodrębnienie wpływu zmiany rozkładu wielkości ziaren i wzajemnego ich przemieszczania. Obydwa czynniki odgrywają zasadniczą rolę w zwiększaniu gęstości objętościowej próbki w przypadku badanego kruszywa o nieciągłym uziarnieniu. Symulacje z ziarnami łamliwymi lepiej odtwarzają badanie laboratoryjne pod względem jakościowym i ilościowym. Wnioski pozwalają na lepsze zrozumienie procesu zagęszczania kruszywa, co ma kluczowe znaczenie dla opracowania nowatorskich strategii zagęszczania i minimalizacji wpływu procesów budowlanych na środowisko.
Rocznik
Strony
179--201
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering Poland
  • Warsaw University of Technology, Faculty of Civil Engineering Poland
  • Warsaw University of Technology, Faculty of Civil Engineering Poland
Bibliografia
  • [1] Chang C.S., Liu Y.: Stress and fabric in granular material. Theoretical and Applied Mechanics Letters, 3, 2, 2013, ID article 021002, DOI: 10.1063/2.1302102
  • [2] Wang S., Miao Y., Wang L.: Investigation of the force evolution in aggregate blend compaction process and the effect of elongated and flat particles using DEM. Construction and Building Materials, 258, 2020, ID article: 119674, DOI: 10.1016/j.conbuildmat.2020.119674
  • [3] Zhou W., Yang L., Ma G., Chang X., Cheng Y., Li D.: Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granular Matter, 17, 4, 2015, 497-509, DOI: 10.1007/s10035-015-0571-3
  • [4] Gou D., Li Y., An X., Yang R.: DEM modelling of particle fragmentation during compaction of particles. Powder Technology, 398, 2022, ID article: 117073, DOI:10.1016/j.powtec.2021.117073
  • [5] Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique, 29, 1, 1979, 47-65, DOI: 10.1680/geot.1979.29.1.47
  • [6] Cil M.B., Buscarnera G.: DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils. Granular Matter, 18, 3, 2016, ID article: 36, DOI: 10.1007/s10035-016-0638-9
  • [7] McDowell G.R., de Bono J.P.: On the micro mechanics of one-dimensional normal compression. Geotechnique, 63, 11, 2013, 895-908, DOI: 10.1680/geot.12.P.041
  • [8] Zhang C., Zhao Y., Bai Q.: 3D DEM method for compaction and breakage characteristics simulation of broken rock mass in goaf. Acta Geotechnica, 7, 2021, 2765-2781, DOI: 10.1007/s11440-021-01379-3
  • [9] Jia M., Liu B., Xue J., Ma G.: Coupled three-dimensional discrete element–finite difference simulation of dynamic compaction. Acta Geotech, 16, 3, 2021, 731-747, DOI: 10.1007/s11440-020-01055-y
  • [10] Zhu X., Qian G., Yu H., Yao D., Shi C., Zhang C.: Evaluation of coarse aggregate movement and contact unbalanced force during asphalt mixture compaction process based on discrete element method. Construction and Building Materials, 328, 2022, ID article: 127004, DOI: 10.1016/j.conbuildmat.2022.127004
  • [11] Ma Z., Liao H., Ning C., Liu L.: Numerical study of the dynamic compaction via DEM. Japanese Geotechnical Society Special Publication, 1, 3, 2015, 17–22, DOI: 10.3208/jgssp.CPN-17
  • [12] Wang C., Moharekpour M., Liu Q., Zhang Z., Liu P., Oeser M.: Investigation on asphalt-screed interaction during pre-compaction: Improving paving effect via numerical simulation. Construction and Building Materials, 289, 2021, ID article: 123164, DOI: 10.1016/j.conbuildmat.2021.123164
  • [13] Przybyłowicz M., Sysyn M., Gerber U., Kovalchuk V., Fischer S.: Comparison of the effects and efficiency of vertical and side tamping methods for ballasted railway tracks. Construction and Building Materials, 314, 2022, ID article: 125708, DOI: 10.1016/j.conbuildmat.2021.125708
  • [14] Qi Q., Chen Y., Nie Z., Liu Y.: Investigation of the compaction behaviour of sand-gravel mixtures via DEM: Effect of the sand particle shape under vibration loading. Computers and Geotechnics, 154, 2023, ID article: 105153, DOI: 10.1016/j.compgeo.2022.105153
  • [15] Pouranian M.R., Shishehbor M., Haddock J.E.: Impact of the coarse aggregate shape parameters on compaction characteristics of asphalt mixtures. Powder Technology, 363, 2020, 369-386, DOI: 10.1016/j.powtec.2020.01.014
  • [16] Komaragiri S., Gigliotti A., Bhasin A.: Feasibility of using a physics engine to virtually compact asphalt mixtures in a gyratory compactor. Construction and Building Materials, 308, 2021, ID article: 124977, DOI: 10.1016/j.conbuildmat.2021.124977
  • [17] Chen J., Huang B., Shu X., Hu C.: DEM simulation of laboratory compaction of asphalt mixtures using an open source code. Journal of Materials in Civil Engineering, 27, 3, 2015, ID article: 04014130, DOI: 10.1061/(ASCE)MT.1943-5533.0001069
  • [18] Ciantia M.O., Arroyo M., Calvetti F., Gens A.: An ap¬proach to enhance efficiency of DEM modelling of soils with crushable grains. Geotechnique, 65, 2, 2015, 91-110, DOI: 10.1680/geot.13.P.218
  • [19] Brzeziński K., Gladky A.: Clump breakage algorithm for DEM simulation of crushable aggregates. Tribology International, 173, 2022, ID article: 107661, DOI: 10.1016/j.triboint.2022.107661
  • [20] Šmilauer V., Angelidakis V., Catalano E., Caulk R., Chareyre B., Chèvremont W., et al.: Yade Documentation 3rd ed., 2021, DOI: 10.5281/ZENODO.5705394
  • [21] Standardization E.C. for: HRN EN 13286-2: 2010 Unbound and Hydraulically Bound Mixtures – Part 2: Test Method for Laboratory Dry Density and Water Content – Proctor Compaction
  • [22] PN-S-02205:1998: Polish standard: Roads – Earthwork – Specifications and tests, 1998
  • [23] Hu W., Polaczyk P., Gong H., Ma Y., Huang B.: Visualization and quantification of soil laboratory impact compaction. Journal of Rock Mechanics and Geotechnical Engineering, 14, 2, 2022, 616-624, DOI: 10.1016/j.jrmge.2021.07.001
  • [24] Xiao J., Zhang X., Zhang D., Xue L., Sun S., Stránský J., et al.: Morphological reconstruction method of irregular shaped ballast particles and application in numerical simulation of ballasted track. Transportation Geotechnics, 24, 2020, ID article: 100374, DOI: 10.1016/j.trgeo.2020.100374
  • [25] An P., Tang H., Li C., Fang K., Lu S., Zhang J.: A fast and practical method for determining particle size and shape by using smartphone photogrammetry. Measurement, 193, 2022, ID article: 110943, DOI: 10.1016/j.measurement.2022.110943
  • [26] Li R., Hu X., Chen F., Wang X., Xiong H., Wu H.: A systematic framework for DEM study of realistic gravel-sand mixture from particle recognition to macro- and micro-mechanical analysis. Transportation Geotechnics, 34, 2022, ID article: 100693, DOI: 10.1016/j.trgeo.2021.100693
  • [27] Brzeziński K., Duda A., Styk A., Kowaluk T.: Photogrammetry-based volume measurement framework for the particle density estimation of LECA. Materials, 15, 15, 2022, ID article: 5388, DOI: 10.3390/ma15155388
  • [28] Paixão A., Resende R., Fortunato E.: Photogrammetry for digital reconstruction of railway ballast particles – A cost-efficient method. Construction and Building Materials, 191, 2018, 963-976, DOI: 10.1016/j.conbuildmat.2018.10.048
  • [29] Huschek-Juhász E., Németh A., Sysyn M., Baranyai G., Liu J., Fischer S.: Testing the fragmentation of railway ballast material by laboratory methods using Proctor compactor. Scientific Bulletin of the National Mining University of Ukraine in Dnipropetrovsk, 1, 2024, 58-68, DOI: 10.33271/nvngu/2024-1/058
  • [30] European standard: HRN EN 13286-2:2010 Unbound and Hydraulically Bound Mixtures – Part 2: Test Method for Laboratory Dry Density and Water Content – Proctor Compaction
  • [31] Angelidakis V., Nadimi S., Otsubo M., Utili S.: CLUMP: a code library to generate universal multi-sphere particles. SoftwareX, 15, 2021, ID article: 100735, DOI: 10.1016/j.softx.2021.100735
  • [32] Suhr B., Six K.: Parametrisation of a DEM model for railway ballast under different load cases. Granular Matter, 19, 4, 2017, 1-16, DOI: 10.1007/s10035-017-0740-7
  • [33] Johnson K.L.: Contact mechanics. Cambridge University Press; 1987
  • [34] Kozicki J., Tejchman J., Mróz Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granular Matter, 14, 4, 2012, 457-468, DOI: 10.1007/s10035-012-0352-1
  • [35] Brzeziński K., Zbiciak A., Gladky A.: Implementation of a viscoelastic boundary condition to Yade – open source DEM software. Journal of Theoretical and Applied Mechanics, 2023, 355-364, DOI: 10.15632/jtam-pl/163053
  • [36] Itasca’s Particle Flow Code Documentation 7.0, software, 2021
  • [37] Šmilauer V.: Cohesive particle model using discrete element method on the Yade platform. PhD Thesis. České vysoké učení technické v Praze. Vypočetní a informační centrum, 2010
  • [38] Park D., Michalowski R.L.: Time-dependent model for sand grain deflection including contact maturing under sustained load. Granular Matter, 22, 2, 2020, ID article: 40, DOI: 10.1007/s10035-020-1008-1
  • [39] Tavares L.M., Rodriguez V.A., Sousani M., Padros C.B., Ooi J.Y.: An effective sphere-based model for breakage simulation in DEM. Powder Technology, 392, 2021, 473-488, DOI: 10.1016/j.powtec.2021.07.031
  • [40] Liu J., Sysyn M., Liu Z., Kou L., Wang P.: Studying the Strengthening Effect of Railway Ballast in the Direct Shear Test due to Insertion of Middle-size Ballast Particles. Journal of Applied and Computational Mechanics, 8, 4, 2022, 1387-1397, DOI: 10.22055/jacm.2022.40206.3537
  • [41] Eliáš J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technology, 264, 2014, 458-465, DOI: 10.1016/j.powtec.2014.05.052
  • [42] Gladkyy A., Kuna M.: DEM simulation of polyhedral particle cracking using a combined Mohr – Coulomb – Weibull failure criterion. Granular Matter, 19, 3, 2017, ID article: 41, DOI: 10.1007/s10035-017-0731-8
  • [43] De Arruda Tino A.A., Tavares L.M.: Simulating breakage tests using the discrete element method with polyhedral particles. Computational Particle Mechanics, 9, 4, 2022, 811-823, DOI: 10.1007/s40571-021-00448-4
  • [44] Lisjak A., Grasselli G.: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 6, 4, 2014, 301-314, DOI: 10.1016/j.jrmge.2013.12.007
  • [45] Yu F.: Particle breakage in granular soils: a review. Particulate Science and Technology, 39, 1, 2021, 91-100, DOI: 10.1080/02726351.2019.1666946
  • [46] Xiao Y., Desai C.S., Daouadji A., Stuedlein A.W., Liu H., Abuel-Naga H.: Grain crushing in geoscience materials – Key issues on crushing response, measurement and modeling: Review and preface. Geoscience Frontiers, 11, 2, 2020, 363-374, DOI: 10.1016/j.gsf.2019.11.006
  • [47] Lai R., Xu F., Qi Q., Nie Z.: Exploring the effects of gravel shapes on vibration compaction behaviours of coarse-grained mixtures via DEM simulations. International Journal of Pavement Engineering, 24, 1, 2023, ID article: 2201501, DOI: 10.1080/10298436.2023.2201501
  • [48] Coetzee C.J.: Calibration of the discrete element method and the effect of particle shape. Powder Technology, 297, 2016, 50-70, DOI: 10.1016/j.powtec.2016.04.003
  • [49] Brzeziński K., Ciężkowski P., Bąk S.: Tricking the fractal nature of granular materials subjected to crushing. Powder Technology, 425, 2023, ID article: 118601, DOI: 10.1016/j.powtec.2023.118601
  • [50] Zhu S., Ye H., Yang Y., Ma G.: Research and application on large-scale coarse-grained soil filling characteristics and gradation optimization. Granular Matter, 24, 4, 2022, ID article: 121, DOI: 10.1007/s10035-022-01280-0
  • [51] Rosato A., Strandburg K.J., Prinz F., Swendsen R.H.: Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Physical Review Letters, 58, 10, 1987, 1038-1040, DOI: 10.1103/PhysRevLett.58.1038
  • [52] Krawczyk B., Szydło A., Mackiewicz P., Dobrucki D.: Assessment criteria of the recycled aggregate cement bound bases. Roads and Bridges - Drogi i Mosty, 18, 2, 2019, 109-126, DOI: 10.7409/rabdim.019.007
  • [53] Graczyk M., Bebłacz D.: Roller-compacted concrete with the use of recycled aggregate for local road pavement execution. Roads and Bridges - Drogi i Mosty, 22, 4, 2023, 433-438, DOI: 10.7409/rabdim.023.025
  • [54] Stokfisz A., Liphardt A.: Assessment of crack propagation resistance in SMA mixtures with reclaimed asphalt pavement. Roads and Bridges - Drogi i Mosty, 22, 4, 2023, 593-604, DOI: 10.7409/rabdim.023.039
  • [55] Suhr B., Skipper W.A., Lewis R., Six K.: DEM modelling of railway ballast using the Conical Damage Model: a comprehensive parametrisation strategy. Granular Matter, 24, 1, 2022, ID article: 40, DOI: 10.1007/s10035-021-01198-z
  • [56] Juhász E., Fischer S.: Investigation of railroad ballast particle breakage. Pollack Periodica, 14, 2, 2019, 3-14, DOI: 10.1556/606.2019.14.2.1
  • [57] Eliáš J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technology, 264, 2014, 458-465, DOI: 10.1016/j.powtec.2014.05.052
  • [58] Liu Y., Gao R., Chen J.: A new DEM model to simulate the abrasion behavior of irregularly-shaped coarse granular aggregates. Granular Matter, 23, 3, 2021, ID article: 61, DOI: 10.1007/s10035-021-01130-5
  • [59] Ngo T., Indraratna B.: Mitigating ballast degradation with under-sleeper rubber pads: Experimental and numerical perspectives. Computers and Geotechnics, 122, 2020, ID article: 103540, DOI: 10.1016/j.compgeo.2020.103540
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-263b1a74-336a-4de5-bc60-ec3ceea1836f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.