PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on loops and eddies identified from the trajectories of drifters in the North Indian Ocean

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We identify loops and eddies from the trajectories of the drifters in the North Indian Ocean (NIO) from October 1985 to March 2019. We use the geometric identification method to identify loops and eddies and compare them with the loops identified from loopers provided by Lumpkin (2016). In NIO, the number of loops estimated from loopers is less than the number of loops and eddies identified by the geometric identification method. A total of 761 loops are identified, of which 346 are eddies, whereas the loops identified from loopers are only 149. Larger radii loops and eddies are observed in the western and central Bay of Bengal (BoB) and the southwestern part of the Arabian Sea (AS). Temporal variation of loops and eddies shows a peak during April–May in the AS and September–October in the BoB. In the BoB, the temporal variation of cyclonic eddies matches with the variation in chlorophyll.
Czasopismo
Rocznik
Strony
516--530
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • CSIR —National Institute of Oceanography, Dona Paula, Goa, India
  • Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
  • CSIR —National Institute of Oceanography, Dona Paula, Goa, India
  • Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
Bibliografia
  • 1. Beal, L.M., Hormann, V., Lumpkin, R., Foltz, G.R., 2013. The response ofthe surface circulation of the Arabian Sea to monsoonal forcing. J. Phys. Oceanogr. 43 (9), 2008-2022. https://doi.org/10.1175/JPO- D- 13-033.1
  • 2. Chaigneau, A., Pizarro, O., 2005. Eddy characteristics in the eastern South Pacific. J. Geophys. Res.-Oceans 110 (C6). https://doi.org/10.1029/2004JC002815
  • 3. Chelton, D., Schlax, M.G., Samelson, R.M., DeSzoeke, R.A., 2007. Global observations of large oceanic eddies. Geophys. Res. Lett. 34 (15). https://doi.org/10.1029/2007GL030812
  • 4. Chelton, D.B., DeSzoeke, R.A., Schlax, M.G., Naggar, K.E., Siwertz, N., 1998. Geographical variability of the first baroclinic rossby radius of deformation. J. Phys. Oceanogr. 28(3), 433-460 http://dx.doi.org/10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2
  • 5. Chen, G., Wang, D., Hou, Y., 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res. 47, 178-185. https://doi.org/10.1016/j.csr.2012.07.011
  • 6. Cheng, X., Xie, S., McCreary, J.P., Qi, Y., Du, Y., 2013. Intraseasonal variability of sea surface height in the Bay of Bengal. J. Geophys. Res.-Oceans 118 (2), 816-830. https://doi.org/10.1002/jgrc.20075
  • 7. Cui, W., Yang, J., Ma, Y., 2016. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22—year altimetry data. Acta Oceanol. Sin. 35 (11), 16-27. https://doi.org/10.1007/s13131- 016- 0945- 3
  • 8. Dandapat, S., Chakraborty, A., 2016. Mesoscale eddies in the Western Bay of Bengal as observed from satellite altimetry in 1993—2014: statistical characteristics, variability and three-dimensional properties. IEEE J. Sel. Top. Appl. 9 (11), 5044-5054. https://doi.org/10.1109/JSTARS.2016.2585179
  • 9. Dong, C., Liu, Y., Lumpkin, R., Lankhorst, M., Chen, D., McWilliams, J.C., Guan, Y., 2011. A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio Extension region. J. Atmos. Ocean. Tech. 28 (9), 1167-1176. https://doi.org/10.1175/JTECH- D- 10- 05028.1
  • 10. Dora, S., Khedekar, R., Aparna, S.G., 2020. Trajectories of three drifters deployed simultaneously in the northeastern Arabian Sea. J. Earth Syst. Sci. 129 (1), 1—8. https://doi.org/10.1007/s12040-019-1292-5
  • 11. Hansen, D.V., Poulain, P.-M., 1996. Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Ocean. Tech. 13 (4), 900-909 http://dx.doi.org/10.1175/1520-0426(1996)013%3C0900:QCAIOW%3E2.0.CO;2
  • 12. Hood, R.R., Beckley, L.E., Wiggert, J.D., 2017. Biogeochemical and ecological impacts of boundary currents in the Indian ocean. Prog. Oceanogr. 156, 290-325. https://doi.org/10.1016/j.pocean.2017.04.011
  • 13. Hormann, V., Centurioni, L.R., Gordon, A.L., 2019. Freshwater export pathways from the Bay of Bengal. Deep-Sea Res. PT II 168, 104645. https://doi.org/10.1016/j.dsr2.2019.104645
  • 14. Hormann, V., Centurioni, L.R., Mahadevan, A., Essink, S., D’Asaro, E.A., Kumar, B.P., 2016. Variability of near-surface circulation and sea surface salinity observed from Lagrangian drifters in the northern Bay of Bengal during the waning 2015 southwest monsoon. Oceanography 29 (2), 124-133. https://doi.org/10.5670/oceanog.2016.45
  • 15. Kantha, L., Rojsiraphisal, T., Lopez, J., 2008. The North Indian Ocean circulation and its variability as seen in a numerical hind-cast of the years 1993—2004. Prog. Oceanogr. 76 (1), 111-147. https://doi.org/10.1016/j.pocean.2007.05.006
  • 16. Kurien, P., Ikeda, M., Valsala, V.K., 2010. Mesoscale variability along the east coast of India in spring as revealed from satellite data and OGCM simulations. J. Oceanogr. 66 (2), 273-289. https://doi.org/10.1007/s10872-010-0024-x
  • 17. Ledwell, J.R., Watson, A.J., Law, C.S., 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364 (6439), 701-703. https://doi.org/10.1038/364701a0
  • 18. Lévy, M., Klein, P., 2004. Does the low frequency variability of mesoscale dynamics explain a part of the phytoplankton and zooplankton spectral variability? Philos. T. Roy. Soc. A 460(2046), 1673-1687. https://doi.org/10.1098/rspa.2003.1219
  • 19. Li, J., Zhang, R., Jin, B., 2011. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Sci 7 (5), 661. https://doi.org/10.5194/os-7-661-2011
  • 20. Liu, Y., Weisberg, R.H., Hu, C., Kovach, C., Riethmüller, R., 2011.Evolution of the Loop Current system during the Deepwater Horizon oil spill event as observed with drifters and satellites. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophys. Monogr. Ser 195, 91-101. https://doi.org/10.1029/2011GM001127
  • 21. Lumpkin, R., 2016. Global characteristics of coherent vortices from surface drifter trajectories. J. Geophys. Res.-Oceans 121 (2), 1306-1321. https://doi.org/10.1002/2015JC011435
  • 22. Lumpkin, R., Centurioni, L., 2019. Global Drifter Program Quality-Controlled 6-hour Interpolated Data from Ocean Surface Drifting Buoys. NOAA National Centers for Environmental Information Dataset. https://doi.org/10.25921/7ntx-z961
  • 23. Molinari, R.L., Olson, D., Reverdin, G., 1990. Surface current distributions in the tropical Indian Ocean derived from compilations of surface buoy trajectories. J. Geophys. Res.-Oceans 95 (C5), 7217-7238. https://doi.org/10.1029/JC095iC05p07217
  • 24. Mukherjee, A., Chatterjee, A., Francis, P., 2019. Role of Andaman and Nicobar Islands in eddy formation along western boundary of the Bay of. Bengal. Sci. Rep.-UK 9 (1), 1-10. https://doi.org/10.1038/s41598-019-46542-9
  • 25. Peng, S., Qian, Y.-K., Lumpkin, R., Du, Y., Wang, D., Li, P., 2015. Characteristics of the near-surface currents in the Indian Ocean as deduced from satellite-tracked surface drifters. Part i: Pseudo-Eulerian statistics. J. Phys. Oceanogr. 45 (2), 441-458. https://doi.org/10.1175/JPO-D-14-0050.1
  • 26. PrasannaKumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S., deSouza, S.N., Gauns, M., Ramaiah, N., Madhupratap, M., 2004. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophys. Res. Lett. 31(7). https://doi.org/10.1029/2003GL019274
  • 27. Price, J.M., Reed, M., Howard, M.K., Johnson, W.R., Ji, Z.G., Marshall Jr., C.F., N., L.G., Rainey, G.B., 2006. Preliminary assessment of an oil-spill trajectory model using satellite-tracked, oil-spill-simulating drifters. Environ. Modell. Softw. 21 (2), 258-270. https://doi.org/10.1016/j.envsoft.2004.04.025
  • 28. Putman, N.F., He, R., 2013. Tracking the long-distance dispersal of marine organisms: sensitivity to ocean model resolution. J. R. Soc. Interface 10 (81), 20120979. https://doi.org/10.1098/rsif.2012.0979
  • 29. Raj, R.P., 2017. Surface velocity estimates of the north indian ocean from satellite gravity and altimeter missions. Int. J. Remote Sens. 38 (1), 296-313. https://doi.org/10.1080/01431161.2016.1266106
  • 30. Roman-Stork, H.L., Subrahmanyam, B., Trott, C.B., 2019. Mesoscale eddy variability and its linkage to deep Convection over the Bay of Bengal using satellite altimetric observations. Adv. Space Res. https://doi.org/10.1016/j.asr.2019.09.054
  • 31. Sengupta, D., Senan, R., Goswami, B.N., Vialard, J., 2007. In-traseasonal variability of equatorial Indian Ocean zonal currents. J. Climate 20 (13), 3036-3055. https://doi.org/10.1175/JCLI4166.1
  • 32. Shankar, D., Vinayachandran, P., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52, 63-120
  • 33. Sharma, R., Gopalan, A.K.S., Ali, M.M., 1999. Interannual variation of eddy kinetic energy from TOPEX altimeter observations. Mar. Geod. 22 (4), 239-248. https://doi.org/10.1080/014904199273371
  • 34. Shenoi, S.S.C., Saji, P.K., Almeida, A.M., 1999. Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from Lagrangian drifters. J. Mar. Res. 57 (6), 885-907. https://doi.org/10.1357/002224099321514088
  • 35. Singh, A., Gandhi, N., Ramesh, R., Prakash, S., 2015. Role of cyclonic eddy in enhancing primary and new production in the Bay of Bengal. J. Sea Res. 97, 5-13. https://doi.org/10.1016/j.seares.2014.12.002
  • 36. Trott, C.B., Subrahmanyam, B., Chaigneau, A., Delcroix, T., 2018. Eddy tracking in the northwestern Indian Ocean during south west monsoon regimes. Geophy. Res. Lett. 45 (13), 6594-6603. https://doi.org/10.1029/2018GL078381
  • 37. Vinayachandran, P., Kurian, J., 2008. Modeling Indian ocean circulation: Bay of Bengal fresh plume and Arabian sea mini warm pool. In: Proceedings of the 12th Asian Congress of Fluid Mechanics. Citeseer, 18-21.
  • 38. Zheng, S., Du, Y., Li, J., Cheng, X., 2015. Eddy characteristics in the South Indian Ocean as inferred from surface drifters. Ocean Sci 11 (3), 361-371. https://doi.org/10.5194/os- 11- 361- 2015
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-263714aa-e9cd-45e1-8fc9-18667d0f88fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.