PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A nature inspired hybrid partitional clustering method based on grey wolf optimization and JAYA algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a hybrid meta-heuristic algorithm that uses the grey wolf optimization (GWO) and the JAYA algorithm for data clustering. The idea is to use the explorative capability of the JAYA algorithm in the exploitative phase of GWO to form compact clusters. Here, instead of using only one best and one worst solution for generating offspring, the three best wolves (alpha, beta and delta) and three worst wolves of the population are used. So, the best and worst wolves assist in moving towards the most feasible solutions and simultaneously it helps to avoid from worst solutions; this enhances the chances of trapping at local optimal solutions. The superiority of the proposed algorithm is compared with five promising algorithms; namely, the sine-cosine (SCA),GWO, JAYA, particle swarm optimization (PSO), and k-means algorithms.The performance of the proposed algorithm is evaluated for 23 benchmark mathematical problems using the Friedman and Nemenyi hypothesis tests. Additionally, the superiority and robustness of our proposed algorithm is tested for 15 data clustering problems by using both Duncan's multiple range test and the Nemenyi hypothesis test.
Wydawca
Czasopismo
Rocznik
Tom
Strony
361--405
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • Sambalpur University, Department of Computer Science & Application, Sambalpur University Institute of Information Technology, Burla, Odisha, India, 768019
autor
  • Sambalpur University, Department of Mathematics, Burla, Odisha, India, 768019
  • Sambalpur University, Department of Computer Science & Application, Sambalpur University Institute of Information Technology, Burla, Odisha, India, 768019
Bibliografia
  • [1] Abdel-Basset M., Manogaran G., El-Shahat D., Mirjalili S.: A hybrid whaleoptimization algorithm based on local search strategy for the permutationflow shop scheduling problem, Future Generation Computer Systems, vol. 85,pp. 129–145, 2018.
  • [2] Aljarah I., Mafarja M., Heidari A.A., Faris H., Mirjalili S.: Clustering analysisusing a novel locality-informed grey wolf-inspired clustering approach, Knowledge and Information Systems, 2020. doi: 10.1007/s10115-019-01358-x.
  • [3] Aljarah I., Mafarja M., Heidari A.A., Faris H., Mirjalili S.: Multi-verse Optimizer:Theory, Literature Review, and Application in Data Clustering. In: S. Mirjalili, J. Song Dong, A. Lewis (eds.), Nature-Inspired Optimizers, pp. 123–141, Springer Cham, 2020.
  • [4] Aydilek I.B.: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems, Applied Soft Computing, vol. 66, pp. 232–249, 2018.
  • [5] Bekkar M., Djemaa H.K., Alitouche T.A.: Evaluation Measures for Models Assessment over Imbalanced Data Sets, Journal of Information Engineering and Applications, vol. 3(10), pp. 27–38, 2013.
  • [6] Bolanos-Martinez D., Bermudez-Edo M., Garrido J.L.: Clustering Study of Vehicle Behaviors Using License Plate Recognition. In: International Conference on Ubiquitous Computing and Ambient Intelligence, pp. 784–795, Springer, 2023.
  • [7] Cheng M.Y., Prayogo D.: Symbiotic organisms search: a new metaheuristic optimization algorithm, Computers & Structures, vol. 139, pp. 98–112, 2014.
  • [8] Chicco D., Jurman G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation, BMC Genomics, vol. 21(1), pp. 1–13, 2020.
  • [9] Dhiman G., Kumar V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications, Advances in Engineering Software, vol. 114, pp. 48–70, 2017.
  • [10] Dorigo M., Di Caro G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation – CEC99 (Cat. No.99TH8406), vol. 2, pp. 1470–1477, IEEE, 1999.
  • [11] El-Ashmawi W.H., Ali A.F., Slowik A.: An improved jaya algorithm with a mod-ified swap operator for solving team formation problem, Soft Computing, vol. 24,pp. 16627–16641, 2020.
  • [12] Emary E., Zawbaa H.M., Grosan C., Hassenian A.E.: Feature subset selection approach by gray-wolf optimization. In: Afro-European Conference for Industrial Advancement, pp. 1–13, Springer, 2015.
  • [13] Eskandar H., Sadollah A., Bahreininejad A., Hamdi M.: Water cycle algorithm –A novel metaheuristic optimization method for solving constrained engineering optimization problems, Computers & Structures, vol. 110, pp. 151–166, 2012.
  • [14] Gao Z.M., Zhao J.: An improved grey wolf optimization algorithm with variable weights, Computational Intelligence and Neuroscience, vol. 2019, 2019.
  • [15] Gholami K., Olfat H., Gholami J.: An intelligent hybrid JAYA and crow search algorithms for optimizing constrained and unconstrained problems, Soft Computing, vol. 25(22), pp. 14393–14411, 2021.
  • [16] Gunduz M., Aslan M.: DJAYA: A discrete Jaya algorithm for solving traveling salesman problem, Applied Soft Computing, vol. 105, p. 107275, 2021.
  • [17] Guo C., Tang H., Niu B., Lee C.B.P.: A survey of bacterial foraging optimization, Neurocomputing, vol. 452, pp. 728–746, 2021.
  • [18] Hatamlou A., Abdullah S., Hatamlou M.: Data clustering using big bang–big crunch algorithm. In: International Conference on Innovative Computing Technology, pp. 383–388, Springer, 2011.
  • [19] Hatamlou A., Abdullah S., Nezamabadi-pour H.: Application of Gravitational Search Algorithm on Data Clustering. In: International Conference on Rough Sets and Knowledge Technology, pp. 337–346, Springer, 2011.
  • [20] Hatamlou A., Abdullah S., Nezamabadi-pour H.: A combined approach for clustering based on K-means and gravitational search algorithms, Swarm and Evolutionary Computation, vol. 6, pp. 47–52, 2012.
  • [21] Holland J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MITPress, 1992.
  • [22] Hou Y., Gao H., Wang Z., Du C.: Improved Grey Wolf Optimization Algorithm and Application, Sensors, vol. 22(10), 3810, 2022.
  • [23] Hruschka E.R., Campello R.J.G.B., Freitas A.A., de Carvalho A.C.P.L.F.: A Survey of Evolutionary Algorithms for Clustering, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 39(2), pp. 133–155, 2009.
  • [24] Ikotun A.M., Ezugwu A.E., Abualigah L., Abuhaija B., Heming J.: K-meansClustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data, Information Sciences, vol. 622, pp. 178–210, 2022.
  • [25] Jafar O.A.M., Sivakumar R.: Ant-based clustering algorithms: A brief survey, International Journal of Computer Theory and Engineering, vol. 2(5),pp. 787–796, 2010.
  • [26] Kamboj V.K., Bath S.K., Dhillon J.S.: Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer, Neural Computing and Applications, vol. 27(5), pp. 1301–1316, 2016.
  • [27] Kar M.K., Kumar S., Singh A.K., Panigrahi S.: A modified sine cosine algorithm with ensemble search agent updating schemes for small signal stability analysis, International Transactions on Electrical Energy Systems, vol. 31(11),e13058, 2021.
  • [28] Kennedy J., Eberhart R.: Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks, vol. 4, pp. 1942–1948, IEEE, 1995.
  • [29] Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing, Science, vol. 220(4598), pp. 671–680, 1983.
  • [30] Lam A.Y.S., Li V.O.K.: Chemical-reaction-inspired metaheuristic for optimization, IEEE Transactions on Evolutionary Computation, vol. 14(3), pp. 381–399, 2009.
  • [31] Mirjalili S.: The ant lion optimizer, Advances in Engineering Software, vol. 83, pp. 80–98, 2015.
  • [32] Mirjalili S.: SCA: a sine cosine algorithm for solving optimization problems, Knowledge-Based Systems, vol. 96, pp. 120–133, 2016.
  • [33] Mirjalili S., Lewis A.: The whale optimization algorithm, Advances in Engineering Software, vol. 95, pp. 51–67, 2016.
  • [34] Mirjalili S., Mirjalili S.M., Lewis A.: Grey wolf optimizer, Advances in Engineering Software, vol. 69, pp. 46–61, 2014.
  • [35] Mittal N., Singh U., Sohi B.S.: Modified Grey Wolf Optimizer for Global Engineering Optimization, Applied Computational Intelligence and Soft Computing, vol. 2016, 2016.
  • [36] Mostafa A., Fouad A., Houseni M., Allam N., Hassanien A.E., Hefny H., Aslan-ishvili I.: A Hybrid Grey Wolf Based Segmentation with Statistical Image for CTLiver Images. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 846–855, Springer, 2016.
  • [37] Nadimi-Shahraki M.H., Taghian S., Mirjalili S.: An improved grey wolf optimizerfor solving engineering problems, Expert Systems with Applications, vol. 166,113917, 2021.
  • [38] Nanda S.J., Panda G.:A survey on nature inspired metaheuristic algorithms for partitional clustering, Swarm and Evolutionary Computation, vol. 16,pp. 1–18, 2014.
  • [39] Niknam T., Amiri B.: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis, Applied Soft Computing, vol. 10(1), pp. 183–197, 2010.
  • [40] Niknam T., Firouzi B.B., Nayeripour M.: An efficient hybrid evolutionary algorithm for cluster analysis. In: World Applied Sciences Journal, vol. 4, pp. 300–307, Citeseer, 2008.
  • [41] Panigrahi S., Behera H.S.: Nonlinear time series forecasting using a novel selfadaptive TLBO-MFLANN model, International Journal of Computational Intelligence Studies, vol. 8(1-2), pp. 4–26, 2019.
  • [42] Rahman M.A., Islam M.Z.: A hybrid clustering technique combininga novel genetic algorithm with K-Means, Knowledge-Based Systems, vol. 71,pp. 345–365, 2014.
  • [43] Rao R.V.: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, International Journal of Industrial Engineering Computations, vol. 7(1), pp. 19–34, 2016.
  • [44] Rao R.V., Savsani V.J., Vakharia D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Computer-Aided Design, vol. 43(3), pp. 303–315, 2011.
  • [45] Shelokar P.S., Jayaraman V.K., Kulkarni B.D.: An ant colony approach for clustering, Analytica Chimica Acta, vol. 509(2), pp. 187–195, 2004.
  • [46] Shial G., Sahoo S., Panigrahi S.: Community Detection and Disease identification using Meta-heuristic based Clustering methods. In: 2022 IEEE India Council International Subsections Conference (INDISCON), pp. 1–6, IEEE, 2022.
  • [47] Shial G., Sahoo S., Panigrahi S.: Identification and Analysis of Breast Cancer Disease using Swarm and Evolutionary Algorithm. In: 2022 IEEE Region 10 Symposium (TENSYMP), pp. 1–6, IEEE, 2022.
  • [48] Shial G., Sahoo S., Panigrahi S.: An Enhanced GWO Algorithm with Improved Explorative Search Capability for Global Optimization and Data Clustering, Applied Artificial Intelligence, 2023. doi: 10.1080/08839514.2023.2166232.
  • [49] Shial G., Tripathy C., Panigrahi S., Sahoo S.: An Improved GWO Algorithm for Data Clustering. In: S.K. Panda, R.R. Rout, R.C. Sadam, B.V.S. Rayanoothala,K.C. Li, R. Buyya (eds.), Computing, Communication and Learning, pp. 79–90, Springer Cham, 2022.
  • [50] Storn R., Price K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, vol. 11(4), pp. 341–359, 1997.
  • [51] Thilagavathy R., Sabitha R.: Using cloud effectively in concept based text mining using grey wolf self organizing feature map, Cluster Computing, vol. 22(5),pp. 10697–10707, 2019.
  • [52] Thirumoorthy K., Muneeswaran K.: A hybrid approach for text document clustering using Jaya optimization algorithm, Expert Systems with Applications, vol. 178, 115040, 2021.
  • [53] Wang H., Geng Q., Qiao Z.: Parameter tuning of particle swarm optimization byusing Taguchi method and its application to motor design. In: 2014 4th IEEE International Conference on Information Science and Technology, pp. 722–726, IEEE, 2014.
  • [54] Wu C., Wang Z.: A modified fuzzy dual-local information c-mean clustering algorithm using quadratic surface as prototype for image segmentation, Expert Systems with Applications, vol. 201, 117019, 2022.
  • [55] Ying L., Yu L., Wei-Neng C., Jun Z.: A hybrid differential evolution algorithm for mixed-variable optimization problems, Information Sciences, vol. 466, pp. 170–188, 2018.
  • [56] Yu K., Qu B., Yue C., Ge S., Chen X., Liang J.: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module, Applied Energy, vol. 237, pp. 241–257, 2019.
  • [57] Yu X., Xu W., Li C.: Opposition-based learning grey wolf optimizer for global optimization, Knowledge-Based Systems, vol. 226, 107139, 2021.
  • [58] Zhang Y., Chi A., Mirjalili S.: Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems, Knowledge-Based Systems, vol. 233, 107555, 2021
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-263646cd-a3b9-40b3-9167-ed1880c89a91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.