Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Sposoby rozwoju kolejowych placów sortowniczych do obsługi pociągów kontenerowych
Języki publikacji
Abstrakty
The purpose of the study was to identify the most effective strategies for developing railway sorting yards to enhance the efficiency of container train handling. The research problem addressed inefficiencies in current railway sorting yard operations, which impede optimal cargo handling and contribute to delays, higher costs, and environmental concerns. The hypothesis posited that integrating automation, infrastructure modernisation, and green technologies could significantly improve efficiency, accuracy, and sustainability. The study fills a research niche by combining technological advancements, infrastructure updates, and environmental considerations to provide a comprehensive approach to modernising railway logistics. The following research methods were employed: statistical analysis of freight traffic data (2020–2023) across Europe, America, and Asia; evaluation of modern technologies; assessment of infrastructure upgrades; and analysis of environmental and occupational training impacts. As a result, the research found that automation and digitalisation, including automatic traffic management systems and container tracking platforms, substantially increase logistics efficiency by reducing downtime and improving accuracy. Modernisation of tracks, switches, and station expansion addresses the growing traffic volumes, while the adoption of modern cranes and lifts accelerates container handling. Integration with sea and road transport hubs enhances the overall logistics network, and the introduction of green energy and energy-efficient technologies reduces the carbon footprint. Proper personnel training ensures effective implementation and high safety standards. The main conclusion is that a comprehensive and integrated approach to the modernisation of sorting yards is essential for optimising container train logistics, increasing safety, and achieving sustainable development in global railway transport.
Celem badania było zidentyfikowanie najskuteczniejszych strategii rozwoju kolejowych placów sortowniczych w celu zwiększenia wydajności obsługi pociągów kontenerowych. Problem badawczy dotyczył nieefektywności obecnych operacji kolejowych placów sortowniczych, które utrudniają optymalną obsługę ładunków i przyczyniają się do opóźnień, wyższych kosztów i problemów środowiskowych. Hipoteza zakładała, że integracja automatyzacji, modernizacji infrastruktury i zielonych technologii może znacznie poprawić wydajność, dokładność i zrównoważony rozwój. Badanie wypełnia niszę badawczą, łącząc postęp technologiczny, aktualizacje infrastruktury i kwestie środowiskowe, aby zapewnić kompleksowe podejście do modernizacji logistyki kolejowej. Zastosowane metody badawcze: analiza statystyczna danych dotyczących ruchu towarowego (2020–2023) w Europie, Ameryce i Azji; ocena nowoczesnych technologii; ocena modernizacji infrastruktury; oraz analiza wpływu na środowisko i szkolenia zawodowe. W rezultacie badanie wykazało, iż automatyzacja i digitalizacja, w tym automatyczne systemy zarządzania ruchem i platformy śledzenia kontenerów, znacznie zwiększają wydajność logistyki poprzez redukcję przestojów i poprawę dokładności. Modernizacja torów, zwrotnic i rozbudowa stacji rozwiązuje problem rosnącego natężenia ruchu, podczas gdy wprowadzenie nowoczesnych dźwigów i wind przyspiesza obsługę kontenerów. Integracja z węzłami transportu morskiego i drogowego wzmacnia ogólną sieć logistyczną, a wprowadzenie zielonej energii i energooszczędnych technologii zmniejsza ślad węglowy. Odpowiednie szkolenie personelu zapewnia skuteczną realizację i wysokie standardy bezpieczeństwa. Głównym wnioskiem jest to, że kompleksowe i zintegrowane podejście do modernizacji placów sortowniczych jest niezbędne do optymalizacji logistyki pociągów kontenerowych, zwiększenia bezpieczeństwa i osiągnięcia zrównoważonego rozwoju w globalnym transporcie kolejowym.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
53--68
Opis fizyczny
Bibliogr. 34 poz., tab.
Twórcy
Bibliografia
- [1] Ahmad, R.W., Hasan, H., Jayaraman, R., Salah, K., Omar, M. 2021. Blockchain applications and architectures for port operations and logistics management. Research in Transportation Business & Management, 41, https://doi.org/10.1016/j.rtbm.2021.100620.
- [2] Association of South East Asian Nations. 2019. International rail transport. https://asean.org/wp-content/uploads/2023/02/FN_International-RailTransport-Part-3.pdf.
- [3] Aulin, V., Lyashuk, O., Pavlenko, O., Velykodnyi, D., Hrynkiv, A., Lysenko, S., Holub, D., Vovk, Y., Dzyura, V., Sokol, M. 2019. Realization of the logistic approach in the international cargo delivery system. Communications - Scientific Letters of the University of Žilina, 21(2), https://doi.org/10.26552/com.c.2019.2.3-12.
- [4] Babachenko, O.I., Kononenko, G.A., Podolskyi, R.V. 2021. Development of a model for calculating changes in K76F rail steel temperature to determine the heat treatment parameters. Science and Innovation, 17(4), https://doi.org/10.15407/SCINE17.04.025.
- [5] Babachenko, O.I., Kononenko, G.A., Podolskyi, R.V., Safronova, O.A., Baskevich, O.S. 2023. Analysis of the Structure of Samples of Rail Steels of the New Generation with Improved Operational Properties. Pt. 2. Metallofizika i Noveishie Tekhnologii, 45(1), https://doi.org/10.15407/mfint.45.01.0137.
- [6] Babachenko, O.I., Kononenko, H.A., Podolskyi, R.V., Safronova, O.A., Taranenko, A.O. 2022. Structure and Fracture Resistance of Steels in Different Zones of Railway Axles. Materials Science, 58(3), https://doi.org/10.1007/s11003-023-00679-1.
- [7] Bekenov, T., Nussupbek, Z., Tassybekov, Z. 2020. Evaluation of the Support-Coupling Patency of Self-propelled Transport. Lecture Notes in Intelligent Transportation and Infrastructure, Part F1382, https://doi.org/10.1007/978-3-030-39688-6_46.
- [8] Bureau of Transportation Statistics. 2023. Transportation statistics annual report, 2023. Washington: United States Department of Transportation. https://doi.org/10.21949/1529944.
- [9] Bureau of Transportation Statistics. 2024. Railroad safety. https://railroads.dot.gov/railroad-safety.
- [10] Capasso, C., Rubino, L., Rubino, G., Veneri, O. 2021. Data Analytics for Performance Modelling of Photovoltaic Systems in the Internet of Energy Scenario. In: 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2021. Florence: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/CPE-POWERENG50821.2021.9501202.
- [11] Chen, T.-L., Chen, J.C., Huang, C.-F., Chang, P.-C. 2021. Solving the layout design problem by simulation-optimization approach – A case study on a sortation conveyor system. Simulation Modelling Practice and Theory, 106, https://doi.org/10.1016/j.simpat.2020.102192.
- [12] Danchuk, V., Shlikhta, H., Usova, I., Batyrbekova, M., Kuatbayeva, G. 2021. Integrated project management systems as a tool for implementing company strategies. Periodicals of Engineering and Natural Sciences, 9(4), https://doi.org/10.21533/pen.v9i4.2308.
- [13] Digitalization in the railway industry. 2022. https://railway-usa.com/market-overview/62652-digitalization-in-the-railway-industry.
- [14] El Yaagoubi, A., Ferjani, A., Essaghir, Y., Sheikhahmadi, F., Abourraja, M.N., Boukachour, J., Baron, M.-L., Duvallet, C., Khodadad-Saryazdi, A. 2022. A logistic model for a French intermodal rail/road freight transportation system. Transportation Research Part E: Logistics and Transportation Review, 164, https://doi.org/10.1016/j.tre.2022.102819.
- [15] European Union Agency for Railways. 2024. European Union railway system safety performance: European railways remain among the safest in the world, [online]. Available at: https://www.era.europa.eu/content/all-aboard-european-railways-focus-era-launched-brussels-2024-report-railway-safety-and [Accessed: 10 December 2024].
- [16] Ficoń, K. 2019. Use of the railway theory in the transport enterprise decision-making process. Military Logistics Systems, 50(1), https://doi.org/10.37055/slw/129232.
- [17] Hilmola, O.-P., Li, W., Panova, Y. 2021. Development status and future trends for Eurasian container land bridge transport. Logistics, 5(1), 18. https://doi.org/10.3390/logistics5010018.
- [18] Hirata, E., Watanabe, D., Lambrou, M. 2022. Shipping digitalization and automation for the smart port. In: T. Bányai, Á. Bányai, I. Kaczmar (Eds.), Supply Chain: Recent Advances and New Perspectives in the Industry 4.0 Era. https://doi.org/10.5772/intechopen.102015.
- [19] Kłodawski, M., Jachimowski, R., Chamier-Gliszczyński, N. 2024. Analysis of the overhead crane energy consumption using different container loading strategies in urban logistics hubs. Energies, 17(5), https://doi.org/10.3390/en17050985.
- [20] Mohammed, A., Bashir, H. 2023. Process analyses for digitalization and automation at operational stop points for European rail freight.: A case study of Hallsberg marshalling yard (Sweden). Stockholm: KTH Royal Institute of Technology. https://kth.diva-portal.org/smash/get/diva2:1825429/FULLTEXT01.pdf.
- [21] Musayev, J., Zhauyt, A., Bahtiyar, B., Kibitova, R., Kazhet, K., Kussyov, A., Kabylkarim, A. 2022. Analysis of dynamic instability of the wheel set of a railway vehicle using the method of generalized hill determinants. Vibroengineering Procedia, 41, https://doi.org/10.21595/vp.2022.22491.
- [22] Palin, E.J., Stipanovic Oslakovic, I., Gavin, K., Quinn, A. 2021. Implications of climate change for railway infrastructure. WIREs Climate Change, 12(5), e728. https://doi.org/10.1002/wcc.728.
- [23] Panchenko, A., Voloshina, A., Milaeva, I., Luzan, P. 2019. Operating conditions’ influence on the change of functional characteristics for mechatronic systems with orbital hydraulic motors. In: Modern Development Paths of Agricultural Production: Trends and Innovations. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-14918-5_18.
- [24] Panchenko, A., Voloshina, A., Milaeva, I., Panchenko, I., Titova, O. 2018. The influence of the form error after rotor manufacturing on the output characteristics of an orbital hydraulic motor. International Journal of Engineering and Technology(UAE), 7(4), https://doi.org/10.14419/ijet.v7i4.3.19542.
- [25] Raimbekov, Z., Sładkowski, A., Syzdykbayeva, B., Azatbek, T., Sharipbekova, K. 2022. Improving the efficiency of transportation and distribution of goods in modern conditions. In: A. Sładkowski (Ed.), Modern Trends and Research in Intermodal Transportation, Cham: Springer. https://doi.org/10.1007/978-3-030-87120-8_4.
- [26] Rosa, A. 2024. Innovative technologies of rail transport used by the Armed Forces of the Republic of Poland. Military Logistics Systems, 60(1), https://doi.org/10.37055/slw/193850.
- [27] Singh, P., Dulebenets, M.A., Pasha, J., Gonzalez, E.D.R.S., Lau, Y.-Y., Kampmann, R. 2021. Deployment of autonomous trains in rail transportation: Current trends and existing challenges. IEEE Access, 9, https://doi.org/10.1109/ACCESS.2021.3091550.
- [28] Singh, P., Elmi, Z., Meriga, V.K., Pasha, J., Dulebenets, M.A. 2022. Internet of Things for sustainable railway transportation: Past, present, and future. Cleaner Logistics and Supply Chain, 4, 100065. https://doi.org/10.1016/j.clscn.2022.100065.
- [29] Southeast Asia Infrastructure. 2023. Rail development in ASEAN: Role of national and state governments, [online]. Available at: https://southeastasiainfra.com/rail-development-in-asean-role-of-national-and-state-governments/ [Accessed: 12 May 2024].
- [30] Šperka, A., Valla, M., Nedeliaková, E., Čamaj, J. 2022. Impact of change of the interlocking on the acceleration of railway transport: A case study from the Podbrezová railway station. Journal of Advanced Transportation, 2022(1), https://doi.org/10.1155/2022/3785474.
- [31] Tsolakis, N., Zissis, D., Papaefthimiou, S., Korfiatis, N. 2022. Towards AI driven environmental sustainability: An application of automated logistics in container port terminals. International Journal of Production Research, 60(14), 4508-4528. https://doi.org/10.1080/00207543.2021.1914355.
- [32] Ukato, A., Sofoluwe, O.O., Jambol, D.D., Ochulor, O.J. 2024. Optimizing maintenance logistics on offshore platforms with AI: Current strategies and future innovations. World Journal of Advanced Research and Reviews, 22(1), 1920-1929. https://doi.org/10.30574/wjarr.2024.22.1.1315.
- [33] Vijayakumar, V., Sgarbossa, F., Neumann, W.P., Sobhani, A. 2021. Framework for incorporating human factors into production and logistics systems. International Journal of Production Research, 60(2), 402-419. https://doi.org/10.1080/00207543.2021.1983225.
- [34] Voloshina, A., Panchenko, A., Boltyansky, O., Titova, O. 2020. Improvement of manufacture workability for distribution systems of planetary hydraulic machines. In: Lecture Notes in Mechanical Engineering. Cham: Springer. https://doi.org/10.1007/978-3-030-22365-6_73.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26360fdd-b26e-4e30-8fb7-e0f8f2746a65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.