Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Two methods for calculating transport parameters in semiconductor superlattices by applying Green’s functions are compared in the paper. For one of the methods, the Wannier functions method, where computations in the complex space and Wannier functions base are required, the Hamiltonian matrix is small in size and its elements depend solely on the energy. For the real space method, as it operates in the floating point domain and uses the Hamiltonian containing the elements dependent both on energy and position, the Hamiltonian matrix is larger in size. The size makes the method computationally challenging. To find the consequences of choosing one of the methods, a?direct comparison between the computations, obtained for both methods with the same input parameters, was undertaken. The differences between the results are shown and explained. Selected simulations allowed us to discuss advantages and disadvantages of both methods. The calculations include transport parameters such as the density of states and the occupation functions, with regard to scattering processes where the self-consistent Born approximation was used, as well as the spatial distribution of electron concentration for two superlattices structures. The numerical results are obtained within the non-equilibrium Green’s functions formalism by solving the Dyson and the Keldysh equations.
Rocznik
Tom
Strony
631--641
Opis fizyczny
Bibliogr. 33 poz., wykr., rys., tab.
Twórcy
autor
- Department of Electronics Fundamentals, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland
autor
- Department of Electronics Fundamentals, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland
Bibliografia
- [1] J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, S-N.G. Chu, and A.Y. Cho, “Short wavelength (λ »3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs”, Appl. Phys. Lett., 72, 680‒684 (1998).
- [2] R. Colombelli, F. Capasso, C. Gmachl, A.L. Hutchinson, D.L. Sivco, A. Tredicucci, M.C. Wanke, A.M. Sergent, and A.Y. Cho, “Far infrared surface-plasmno quantum-cascade lasers at 21.5 μm and 24 µm wavelenglengths”, Appl. Phys. Lett., 78, 2620‒2622 (2001).
- [3] K. Kosiel, M. Bugajski, A. Szerling, J. Kubacka-Traczyk, P. Karbownik, E. Pruszyńska-Karbownik, J. Muszalski, A. Łaszcz, P. Romanowski, M. Wasiak, W. Nakwaski, I. Makarowa, and P. Perlin, “77 K Operation o AlGaAs/GaAs Quantum Cascade Laser at 9 µm”, Photonics Lett. Pol., 1 (1) 16‒18 (2009).
- [4] R.F. Kazarinov and R.A. Suris, “Possibility of the Amplification of Electromagnetic Waves in a Semiconductor with a Superlattice”, Sov. Phys. Semicond. 5, 707–709 (1971).
- [5] M. Bugajski, K. Pierściński, D. Pierścińska, A. Szerling, and K. Kosiel, “Multimode Instabilities in Mid-Infrared Quantum Cascade Lasers”, Photonics Lett. Pol., 5 (3) 85‒87 (2013).
- [6] P. Karbownik, A. Trajnerowicz, A. Szerling, A. Wójcik-Jedlińska, M. Wasiak, E. Pruszyńska-Karbownik, K. Kosiel, I. Gronowska, R. P. Sarzała, and M. Bugajski, “Direct Au-Au Bonding Technology for High Performance GaAs/AlGaAs Quantum Cascade Lasers”, Opt. Quant. Electron., 47 (4) 893‒899 (2015).
- [7] E. Bellotti, K. Driscoll, T.D. Moustakas, and R. Paiella, “Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors”, J. Appl. Phys., 105 (11) 113103–113103‒9 (2009).
- [8] P. Borowik, J.L. Thobel, and L. Adamowicz, “Monte Carlo modeling applied to studies of quantum cascade lasers”, Opt. Quant. Electron., 49: 96 (2017).
- [9] T. Kubis, C. Yeh, and P. Vogl, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers”, Phys. Rev. B, 79 (19) 195323‒1‒195323‒10, May (2009).
- [10] A. Wacker, ”Gain in quantum cascade lasers and superlattices: A quantum transport theory”, Phys. Rev. B, 66, 085326‒1–085326‒7 (2002).
- [11] M. Pereira, S-C Lee, and A. Wacker, “Effect of Coulomb corrections and mean field on gain and absorption in Quantum Cascade Lasers”, Phys. Status Solidi C: current topics in Solid State Physics, 2 (8), 3027‒3030 (2005).
- [12] S.-C. Lee and A. Wacker, “Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures”, Phys. Rev. B, 66, 245314‒1– 245314‒18 (2002).
- [13] S.-C. Lee, F. Banit, M. Woerner, and A. Wacker, “Quantum-mechanical wavepacket transport in quantum cascade laser structures”, Phys. Rev. B, 73, 245320‒1‒245320‒6, (2006).
- [14] S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: General Purpose 3-D Simulations”, IEEE Transactions on Electron Devices, 54 (9) 2137‒2142 (2007).
- [15] G. Hałdaś, A. Kolek, and I. Tralle, “Modeling of Mid-Infrared Quantum Cascade Laser by Means of Nonequilibrium Green’s Functions”, IEEE J. Quantum Electron., 47 (6) 878‒885 (2011).
- [16] G. Hałdaś, A. Kolek, D. Pierścińska, P. Gutowski, K. Pierściński, P. Karbownik, and M. Bugajski, ”Numerical simulation of GaAsbased mid-infrared one-phonon resonance quantum cascade laser”, Opt. Quant. Electron., 49, 22 (2017).
- [17] A. Kolek, G. Hałdaś, and M. Bugajski, “Nonthermal Carrier Distributions in the Subbands of 2-Phonon Resonance Mid-Infrared Quantum Cascade Laser”, Appl. Phys. Lett., 101, 061110 (2012).
- [18] M. Mączka, S. Pawłowski, and J. Plewako, “Comparative analysis of selected models of semiconductor superlattices”, Przegląd Elektrotechniczny, no. 8, 93 (2011).
- [19] M. Mączka, S. Pawłowski, “Wannier function applied to quantum cascade lasers modelling”, Przegląd Elektrotechniczny, no. 12, 245‒249 (2013).
- [20] M. Mączka, G. Hałdaś, and S. Pawłowski, “Study of quantum states maximal localization in nonsymmetrical semiconductor superlattice structures”, Selected Issues of Electrical Engineering and Electronics (WZEE), IEEE Conference Publications, 13 (2016).
- [21] M. Mączka, “Calculations of the QCL transport parameters using Büttiker probes”, Przegląd Elektrotechniczny, no. 7, 190‒196 (2016).
- [22] M. Mączka and S. Pawłowski, “Efficient method for transport simulations in quantum cascade lasers”, International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors (IC SeNOB ), EPJ Web of Conferences, 133 (2017).
- [23] H. Callebaut, S. Kumar, B.S. Williams, and Q. Hu, “Analysis of transport properties of tetrahertz quantum cascade lasers”, App. Phys. Lett. 83 (2) 207‒209 (2003).
- [24] H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ ¼ 9 μm“, App. Phys. Lett. 78, 3529‒3531 (2001).
- [25] A. Wacker, “Semiconductor superlattices: a model system for nonlinear transport”, Physics Reports, 357, 1‒111 (2002).
- [26] R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, ”Single and multiband modeling of quantum electron transport through layered semiconductor devices”, J. Appl. Phys., 81, 7845‒7869 (1997).
- [27] S. Datta, “Steady-state quantum kinetic equation”, Phys. Rev. B, 40, 5830‒5833 (1989).
- [28] S. Datta, Electronic transport in mesoscopic systems, Cambridge University Press, 1995.
- [29] S. Datta, “A simple kinetic equation for steady-state quantum transport”, J. Phys. Condens. Matter, 2 (40) 8023 (1990).
- [30] L.V. Keldysh, ”Diagram technique for non-equilibrium processes”, Sov. Phys. JETP, 20 (4) 1018–1026 (1965).
- [31] M. Büttiker, “Four-Terminal Phase-Coherent Conductance”, Phys. Rev. Lett., 57, 1761‒1764 (1986).
- [32] R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and M. Lundstrom, ”A simple quantum mechanical treatment of scattering in nanoscale transistors”, J. Appl. Phys., 93, 5613‒5625 (2003).
- [33] A. Wacker, “Coherence and spatial resolution of transport in quantum cascade lasers”, Phys. Stat. Sol., 5 (1) 215–220 (2008).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-262efc18-5399-48b8-b3d6-419d463d8ea7