Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Accumulation of 34 trace and major elements was analysed in 9 plant species (Tussilago farfara, Arctium tomentosum, Solidago canadensis, Populus L., Eupatorium cannabinum, Verbascum sp., Solanum nigrum, Rumex crispus L., Betula pendula) and one fungus (Schizophyllum commune) collected from coal, PbZn-smelting, and mixed-type waste heaps in Upper Silesia (Poland). The most persistent and extreme enrichment was found in the burnt bark of Betula pendula from Bytom. Enrichment factors in relation to the geometric mean of elevated (PE) and hyperaccumulator (PH) plant contents show extreme values for elements toxic to vegetation, such as Zn (EFPE up to 13, EFPH up to 17), Pb (EFPH up to 4, EFPE up to 161), Tl (EFPE up to 8), Cd (EFmax of 327), Hg (EFPH up to 3), and Ag (maximum EFPE of 14). Elevated are also V (EFPN up to 13), Sc (EFPN up to 14), Ni (EFPN up to 17), Se (EFPN up to 16), Fe (EFPN up to 48), Co (EFPN up to 23), Sb (EFPN up to 31), and Bi (EFPN up to 34). Although the levels of the elements studied were usually below potentially toxic levels, they were often above the normal ones. Furthermore, significant differences in the contents between different plant tissues were observed, as reflected in the translocation factor (TF). Verbascum sp. and S. nigrum accumulate such elements mostly in their above-ground tissues, and may thus be considered useful in phytoextraction of Zn, Pb and other elements. Sl. canadensis and E. cannabinum mostly display the opposite strategy, with element immobilization in their roots. Extreme Zn contents in E. cannabinum, peaking in its roots, suggest it to be a potential Zn phytostabilizer.
Czasopismo
Rocznik
Tom
Strony
art. no. 30
Opis fizyczny
Bibliogr., 126 poz., tab., fot., rys.
Twórcy
autor
- Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818, Warszawa, Poland
autor
- Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818, Warszawa, Poland
autor
- Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818, Warszawa, Poland
Bibliografia
- 1. Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N.K., Khan, M.I., Amjad, M., Hussain, M., Natasha, 2018. Arsenic uptake, toxicity, detoxification and speciation in plants: physiological, biochemical and molecular aspects. International Journal of Environmental Research and Public Health, 15: 59-104.
- 2. Abramowicz, A., Rahmonov, O., Chybiorz, R., 2020. Environmental management and landscape transformation on self-heating coal-waste dumps in the Upper Silesian Coal Basin. Land, 10.
- 3. Adamakis, I.-D.S., Panteris, E., Eleftheriou, E.P., 2012. Tungsten toxicity in plants. Plants, 1: 82-99.
- 4. Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., Jiang, J., 2019. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment, 712: 135637.
- 5. Alloway, B.J., 2013. Heavy metals and metalloids as micronutrients for plants and animals. Heavy Metals in Soils: 195-209. Whiteknights, Springer.
- 6. Ashraf, M.A., Maah, M.J., Yusoff, I., 2019. Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmen tal Science and Technology, 8: 401-416.
- 7. Atanassova, I.D., Benkova, M.G., Simeonova, T.R., Nenova, L.G., Banov, M.D., Doerr, S.H., Rousseva, S.S., 2018. Heavy metal mobility and PAHs extractability relationships with soil hydrophobicity in coal ash reclaimed technogenic soils (Technosols). Global Symposium on Soil Pollution, 2-4 May 2018, Fao, Rome, Italy; poster, https://www.fao.org/about/meetings/global-symposium-on-soil-pollution/resources/posters/en/
- 8. Baker, A.J.M., 1981. Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3: 643-654.
- 9. Baker, A.J.M., McGrath, S.P., Reeves, R.D., Smith, J.A.C., 1999. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soils (eds. N. Terry, J. Vangronsveld and G. Banuelos): 85-107. CRC Press, Boca Raton, Florida.
- 10. Bârlea, G., Ardelean, A., 2009. A comparative analysis of the histological structure of the aerial organs of plants grown on sterile heaps and respectively in ordinary soil. Studia Univ. “Vasile Goldis”, 19: 16-170.
- 11. Bergqvist, C., 2011. Arsenic accumulation in various plant types. Lic. Phil. thesis, Department of Botany, Stockholm University, Sweden.
- 12. Bielecka, A., Królak, E., 2019a. Solidago canadensis as a bioaccumulator and phytoremediator of Pb and Zn. Environmental Science and Pollution Research, 26: 36942-3695.
- 13. Bielecka, A., Królak, E., 2019b. The accumulation of Mn and Cu in the morphological parts of Solidago canadensis under different soil conditions. PeerJ, 7: e8175.
- 14. Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., Morel, J.L., 2006. Heavy metal contamination from mining sites in South Morocco: assessment of metal accumulation and toxicity in plants. Chemosphere, 63: 811-817.
- 15. Bril, H., Zainoun, K., Puziewicz, J., Courtin-Nomade, A., Vanaecker, M., Bollinger, J.-C., 2008. Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: an example from Świętochłowice, Upper Silesia, Poland. The Canadian Mineralogist, 46: 1235-1248.
- 16. Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., Lux, A., 2007. Zinc in plants. New Phytologist, 173: 677-702.
- 17. Cebulak, S., Smieja-Król, B., Tabor, A., Misz, M., Jelonek, I., Jelonek, Z., 2005. Oksyreaktywna Analiza Termiczna (OTA) - dobra i tania metoda oceny samozapalności węgli na składowiskach - wstępne wyniki badań (in Polish). Materiały konferencyjne LXXVI Zjazdu Naukowego Polskiego Towarzystwa Geologicznego, Warszawa, 135-138.
- 18. Clemens, C., 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Plama, 4: 475-486.
- 19. Chang, H.-F., Wang, S.-L., Yeh, K.-C., 2017. Effect of gallium exposure in Arabidopsis thaliana is similar to aluminum stress. Environmental Science and Technology, 51: 1241-1248.
- 20. Chaudhry, F.M., Wallace, A., Mueller, R.T., 1977. Barium toxicity in plants. Communications in Soil Science and Plant Analysis, 8: 759-797.
- 21. Chen, C., Huang, D., Liu, J., 2009. Functions and toxicity of nickel in plants: Recent advances and future prospects. Review, Clean, 37: 304-313.
- 22. Cowgill, U.M., 1988. The tellurium content of vegetation. Biological Trace Element Research, 17: 43-67.
- 23. Dalvi, A.A., Bhalerao, S.A., 2013. Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Annals of Plant Sciences, 2: 362-368.
- 24. de Oliveira, C., Ramos, S.J., Siqueira, J.O., Faquin, V., de Castro, E.M., Amaral, D.C., Techio, V.H., Coelho, L.C., e Silva, P.H.P., Schnug, E., Guilherme, L.R.G., 2015. Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants. Ecotoxicology and Environmental Safety, 122:136-144.
- 25. Dmowski, K., Kozakiewicz, M., Kozakiewicz, A., 2000. Small mammal response at population and community level to heavy metal pollution (Pb, Cd, Tl). In: Demography in Ecotoxicology (eds. J. Kammenga and R. Laskowski): 113-125. Wiley, New York.
- 26. Emamverdian, A., Ding, Y., Mokhberdoran, F., Xie, Y., 2015. Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 18.
- 27. Farooq, M.A., Islam, F., Ali, B., Najeeb, U., Mao, B., Fill, R.A., Yan, G., Siddique, K.H.M., Zhou, W., 2016. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132: 42-52.
- 28. Ferguson, T.J., 2012. Thallium, Chapter 148. In: Poisoning and Drug Overdose (ed. K.R. Olson). McGraw Hill, USA.
- 29. Findenegg, G., Broda, E., 1965. Mechanism of uptake of trace elements by plant roots. Nature: 208: 196-197.
- 30. Gupta, M., Gupta, S., 2017. An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science: 7.
- 31. Gupta, D.K., Walter, C. (eds.), 2018. Behaviour of Strontium in Plants and the Environment. Springer International Publishing, Cham, Switzerland.
- 32. Hall, J.L., 2002. Cellular mechanisms for heavy metal detoxification and tolerance, Journal of Experimental Botany, 53: 366, 1-11.
- 33. IPNI (International Plant Nutrition Institute, Peachtree Corners, Georgia, USA), 2019. Nutri-Facs: Agronomic fact sheets on crop nutrients, www.ipni.net, Refs. #1 #14024, #3 #16045, #5 #15040, #6 #16046, #7 #18018, #8 #14031, #10 #15021, #12 #15058, #15 #15049, #17 #18030, (retrieved on 10.01.2021).
- 34. Ismael, M.A., Elyamine, A.M., Moussa, M.G., Cai, M., Zhao, X., Hu, C., 2018. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11: 255-277.
- 35. Jasinskas, A., Mieldaįys, Jotautiene, E., Domeika, R., Vaiciukevičius, E., Marks, M., 2020. Technical, environmental, and qualitative assessment of the oak waste processing and its usage for energy conversion. Sustainability, 12: 8113.
- 36. Jensen, H., Gaw, S., Lehto, N.J., Hassall, L., Robinson, B.H., 2018. The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 209: 675-684.
- 37. Juda-Rezler, K., Kowalczyk, D., 2013. Size distribution and trace elements contents of coal fly ash from pulverized boilers. Polish Journal of Environmental Studies, 22: 25-40.
- 38. Kabata-Pendias, A., Pendias, H., 2001. Trace Elements in Soils and Plants. Boca Raton, FL: CRC Press.
- 39. Karbowska, B., 2016. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environmental Monitoring and Assessment, 188: 640.
- 40. Kaur, H., Garg, N., 2021. Zinc toxicity in plants: a review. Planta, 253: 129.
- 41. Kazantzis, G., 2000. Thallium in the environment and health effects. Environmental Geochemistry and Health, 22: 275-280.
- 42. Ketris, M.P., Yudovich, Ya.E., 2009. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78: 135-148.
- 43. Koca, A.F., Tekguler, B., 2016. Two antioxidant elements of Allium vegetables: germanium and selenium. Acta Horticulturae, 1143: 297-302.
- 44. Kokowska-Pawłowska, M., 2015. Petrographic and mineral variability of the rocks accompanying selected coal seams of the Poruba beds and their influence of the trace elements content. Mining Resources Management, 31: 73-92.
- 45. Kowalska, J., Stryjewska, E., Bystrzejewska-Piotrowska, G., Lewandowski, K., Tobiasz, M., Pałdyna, J., Golimowski, J., 2012. Studies of plants useful in the re-cultivation of heavy metals-contaminated wasteland - a new hyperaccumulator of barium? Polish Journal of Environmental Studies, 21: 401-405.
- 46. Knicker, H., 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85: 91-118.
- 47. Kruszewski, Ł., 2013. Supergene sulphate minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. International Journal of Coal Geology, 105: 91-109.
- 48. Kruszewski, Ł., 2018. Geochemical behavior of trace elements in the Upper and Lower Silesian Basin coal-fire gob piles of Poland. Chapter 19. In: Coal and Peat Fires: A Global Perspective, 5 - “Case Studies - Advances in Field and Laboratory Research” (ed. G.B. Strache): 407-449. ISBN 978-0-12-849885-9.
- 49. Kruszewski, Ł., Fabiańska, M.J., Ciesielczuk, J., Segit, T., Orłowski, R., Motyliński, R., Moszumańska, I., Kusy, D., 2018. First multi-tool exploration of a gas-condensate-pyrolysate system from the environment of burning coal mine heaps: An in situ FTIR and laboratory GC and PXRD study based on Upper Silesian materials. Science of the Total Environment, 640-641: 1044-1071.
- 50. Kruszewski, Ł., Fabiańska, M.J., Segit, T., Kusy, D., Motyliński, R., Ciesielczuk, J., Deput, E., 2019. Carbon-nitrogen compounds, alcohols, mercaptans, monoterpenes, acetates, aldehydes, ketones, SF6, PH3, and other fire gases in coal-mining waste heaps of Upper Silesian Coal Basin (Poland) - a re-investigation by means of in-situ FTIR external database approach. Science of the Total Environment, 698: 134274.
- 51. Lamb, D.T., Matanitobua, V.P., Palanisami, T., Megharaj, M., Naidu, R., 2013. Bioavailability of barium to plants and invertebrates in soils contaminated by barite. Environmental Science & Technology, 47: 4670-4676.
- 52. Lange, B., van der Ent, A., Baker, A.J.M., Echevarria, G., Mahy, F., Malaisse, F., Meerts, P., Pourret, O., Verbruggen, N., Faucon, M.-P., 2016. Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 213: 537-551.
- 53. Lewińska-Preis, L., Fabiańska, M.J., Parzentny, H., Kita, A., 2008. Geochemical characteristics of the macromolecular part of crude and biodesulphurised coal density fractions. Chemie der Erde, 68: 279-293.
- 54. Li, R., Wu, H., Ding, J., Fu, W., Gan, L., Li, Y., 2017. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Scientific Reports, 7: 46545.
- 55. Li, C., Liang, H., Liang, M., Chen, Y., Zhou, Y., 2018. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China. Environmental Science and Pollution Research, 25: 16652-16663.
- 56. Liu, W.-S., van der Ent, A., Morel, J.L., Echevarria, G., Spiers, K.M., Montargčs-Pelletier, E., Qiu, R.-L., Tang, Y.-T., 2020. Spatially resolved localization of lanthanum and cerium in the rare earth element hyperaccumulator fern Dicranopteris linearis from China. Environmental Science & Technology, 54: 2287-2294.
- 57. Lutgen, P., 2015. Gallium, key element in the excellent Bamileke Artemisia?
- 58. Lyu, S., Wei, X., Chen, J., Wang, C., Wang, X., Pan, D., 2017. Titanium as a beneficial element for crop production. Frontiers in Plant Science, 8.
- 59. Martin, A.L., 1937. A comparison of the effects of tellurium and selenium on plants and animals. Ameri can Journal of Botany, 24: 198-203.
- 60. Martinez, A.C., Ressler, D.E., 2001. Soil surface conditions of an active coal mine fire, Centralia PA. GSA Annual Meeting, November 5-8, 2001, Paper No. 98-0.
- 61. Mazur, R., Sadowska, M., Kowalewska, Ł., Abratowska, A., Kalaji, H.M., Mostowska, A., Garstka, M., Krasnodębska-Ostręga, B., 2016. Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity. BMC Plant Biology, 16: 191.
- 62. McCutcheon, S.C., Schnoor, J.L., 2003. Phytoremediation. John Wiley & Sons, New Jersey.
- 63. McGrath, S.P., Micó, C., Zhao, F.J., Stroud, J.L., Zhang, H., Fozard, S., 2010. Predicting molybdenum toxicity to higher plants: estimation of toxicity and threshold values. Environmental Pollution, 158: 3085-3094.
- 64. Mengel, K., Kirkby, E.A., 2001. Molybdenum. Principles of Plant Nutrition (5th ed.): 613-619. Kluwer Academic Publishers, Dordrecht.
- 65. Menzies, N., 2009. The science of phosphorus nutrition: forms in the soil, plant up take, and plant response. The University of Queensland, St. Lucia, GRDC Update Papers, https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2009/02/the-science-of-phosphorus-nutrition-forms-in-the-soil-plant-uptake-and-plant-response
- 66. Millaleo, R., Reyes-Díaz, M., Ivanov, A.G., Mora, M.L., Alberdi, M., 2010. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10: 476-494.
- 67. Montross, S.N., Yang, J., Britton, J., McKoy, M., Verba, C., 2020. Leaching of rare earth elements from Central Appalachian coal seam underclays. Minerals, 10: 577.
- 68. Nádudvari, Á., Fabiańska, M.J., Marynowski, L., Kozielska, B., Konieczyński, J., Smołka-Danielowska, D., Ćmiel, S., 2018. Distribution of coal and coal combustion related organic pollutants in the environment of the Upper Silesian Industrial Region. Science of the Total Environment, 628-629: 1462-1488.
- 69. Nádudvari, Á., Cabała, J., Marynowski, L., Jabłońska, M., Dziurowicz, M., Malczewski, D., Kozielska, B., Siupka, P., Piotrowska-Seget, Z., Simoneit, B.R.T., Szczyrba, M., 2022. High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. Journal of Hazardous Materials, 431: 128542.
- 70. Nasdala, L., Pekov, I.V., 1993. Ravatite, C14H10, a new organic mineral species from Ravat, Tajikistan. Europrean Journal of Mineralogy, 5: 699-705.
- 71. Nejad, S.A.G., Etassami, H., 2020. The Importance of Boron in Plant Nutrition. In: Metalloids in Plants. Advances and Future Prospects (eds. R. Deshmukh, D.K. Tripathi and G. Guerriero): 431-447. John Wiley & Sons, Inc., Hoboken, NJ, USA.
- 72. Nowak, K., Galuskina, I., Galuskin, E., 2020. Greenockite whiskers from the Bytom burned coal dump, Upper Silesia, Poland. Minerals, 10: 470.
- 73. Novo, L.A., Mahler, C.F., González, L., 2015. Plants to harvest rhenium: scientific and economic viability. Environmental Chemistry Letters, 7.
- 74. Pałys, J., 1966. On genesis of brines in Upper Carboniferous in Upper Silesia (in Polish with English summary). Annales Societas Geologorum Poloniae, 36: 121-154.
- 75. Parker, R.L., 1967. Data of Geochemistry, 6th ed. Chapter D. Composition of the Earth's Crust. U.S. Geological Survey Professional Paper, 440-D.
- 76. Patra, M., Sharma, A., 2000. Mercury toxicity in plants. The Botanical Review, 66: 379-422.
- 77. Parzentny, H., 1994. Lead distribution in coal and coaly shales in the Upper Silesian Coal Basin. Geological Quarterly, 38: 43-58.
- 78. Parzentny, H., Różkowska, A., Róg, L., 1999. Relationship between bed thickness, average ash content, and Zn and Pb content in coal in the Upper Silesian Coal Basin. Geological Quarterly, 43: 365-374.
- 79. Pastricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., Agarwal, S., 2021. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis. Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4: 100197.
- 80. Peng, J.-S., Gong, J.-M., 2014. Vacuolar sequestration capacity and long-distance metal transport in plants. Frontiers in Plant Science, 5: 19.
- 81. Peer, W.A., Mahmoudian, M., Freeman, J.L., Lahner, B., Richards, E.L., Reeves, R.D., Murphy, A.S., Salt, D.E., 2006. Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytologist: 172: 248-260.
- 82. Pé-Leve Santos, S.C., Eloy Cruz, M., Barroso, A.M.E., Fonseca, C.P.S., Guerra, M., Carvalho, M.L., Santos, J.P., 2013. Elemental characterization of plants and soils in Panasqueira tungsten mining region. Journal of Soils and Sediments, 14: 778-784.
- 83. PZPWŚ, 2004. Plan Zagospodarowania Przestrzennego Województwa Śląskiego (in Polish). Marszałek Województwa Śląskiego, Katowice, https://planzagospodarowania.slaskie.pl
- 84. Querol, X., Zhuang, X., Font, O., Izquierdo, M., Alastuey, A., Castro, I., van Drooge, B.L., Moreno, T., Grimalt, J.O., Elvira, J., Cabańas, M., Bartroli, R., Hower, J.C., Ayora, C., Plana, F., López-Soler, A., 2011. Influence of soil cover on reducing the environmental impact of spontaneous combustion in coal waste gobs: Areview and new experimental data. International Journal of Coal Geology, 85: 2-22.
- 85. Ray, R., Dutta, B., Mandal, S.K., González, A.G., Pokrovsky, O.S., Jana, T.K., 2020. Bioaccumulation of vanadium (V), niobium (Nb) and tantalum (Ta) in diverse mangroves of the Indian Sundarbans. Plant and Soil, 448: 553-564.
- 86. Reeves, R.D., 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil, 249: 57-65.
- 87. Reeves, R.D., Baker, A.J.M., 2000. Metal-accumulating plants. In: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment (eds. I. Raskin and B.D. Ensley): 193-229. John Wiley and Sons, New York.
- 88. Reeves, R.D., Baker, A.J.M., Jaffré, T., Erskine, P.D., Echevarria, G., van der Ent, A., 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist: 218: 407-411.
- 89. Rieuwerts, J.S., Thornton, I., Farago, M.E., Ashmore, M.R., 1998. Factors Influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10: 61-75.
- 90. Rostański, A., 2006. Spontaniczne kształtowanie się pokrywy roślinnej na zwałowiskach po górnictwie węgla kamiennego na Górnym Śląsku (in Polish). Wydawnictwo Uniwersytetu Śląskiego, Katowice.
- 91. Rostański, A., Woźniak, G., 2000. The development of vegetation on industrial wastelands in Upper Silesia (Poland) and the Ruhr Region (Germany). Publications of the Department of Plant Taxonomy of the Adam Mickiewicz University in Poznań, 10: 259-269.
- 92. Sagiroglu, A., Sasmaz, A., Sen, Ö., 2006. Hyperaccumulator plants of the Keban Mining District and their possible impact on the environment. Polish Journal of Environmental Studies, 15: 317-325.
- 93. Saric, M.R., Stojanovic, M., Babic, M., 1995. Uranium in plant species grown on natural barren soil. Journal of Plant Nutrition, 18: 1509-1518.
- 94. Sasmaz, M., Senel, G.U., Obek, E., 2021. Boron Bioaccumulation by the Dominant Macrophytes Grown in Various Discharge Water Environments. Bulletin of Environmental Contamination and Toxicology, 106: 1050-1058.
- 95. Seredin, V.V., Finkelman, R.B., 2008. Metalliferous coals: a review of the main genetic and geochemical types. International Journal of Coal Geology, 76: 253-289.
- 96. Shtangeeva, I., Ayrault, S., 2004. Phytoextraction of thorium from soil and water media. Water, Air and Soil Pollution, 154: 19-35.
- 97. Shtangeeva, I., Ayrault, S., Jain, J., 2004. Scandium bioaccumulation and its effect on uptake of macro- and trace elements during initial phases of plant growth. Soil Science and Plant Nutrition, 50: 877-883.
- 98. Shtangeeva, I. (ed.), 2005. Trace and Ultratrace Elements in Plants and Soil. Advances in Ecologi cal Sciences, 20. WIT Press, Ashurst (UK) and Billerica (Massachusetts, USA).
- 99. Shtangeeva, I., 2008. Uranium and Thorium Accumulation in Cultivated Plants. In: Trace elements as Con tami nants and Nutrients: Consequences in Ecosystems and Human Health (ed. M.N.V. Prasad): 295-342. John Wiley and Sons, Inc., Hoboken, NJ, USA .
- 100. Silva, L., Oliveira, M., Philippi, V., Serra-Rodrígues, C., Dai, S., Xue, W., Chen, W., O'Keefe, J., Romanek, C.S., Hopps, S., Hower, J.C., 2012. Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. International Journal of Coal Geology, 94: 206-213.
- 101. Siwek, M., 2008. Rośliny w skażonym metalami ciężkimi środowisku poprzemysłowym (in Polish). Pt. 1. Pobieranie, transport i toksyczność metali ciężkich (śladowych). Wiadomości Botaniczne, 52 (1/2): 7-22.
- 102. Smoliński, A., Rompalski, P., Cybulski, K., Chećko, J., Howaniec, N., 2014. Chemometric study of trace elements in hard coals of the Upper Silesian Coal Basin, Poland. The Scientific World Journal (Hindawi Publishing Corporation): 234204.
- 103. Sokol, E.V., Maksimova, N.V., Nigmatulina, E.N., Sharygin, V.V., Kalugin, V.M., 2005. Combustion metamorphism (in Russian). Publishing House of the SB RAS. Novosibirsk, Russia.
- 104. Srebrodolskiy, B.I., 1989. Tainy Sezonnykh Mineralov (in Russian): 59-119. Nauka, Moscow.
- 105. Stefanowicz A.M., Stanek M., Woch, M.W., Kapusta, P., 2016. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining. Environmental Science and Pollution Research, 23: 6524-6534.
- 106. Stracher, G.B., 2007. The origin of gas-vent minerals: isochemical and mass-transfer processes. GSA Reviews in Engineering Geology, 18: 91-96.
- 107. Tang, Z., Xu, W., Zhou, G., Bai, Y., Li, J., Tang, X., Chen, D., Liu, Q., Ma, W., Xiong, G., He, H., He, N., Guo, Y., Guo, Q., Zhu, J., Han, W., Huifeng, H., Fang, J., Xie, Z., 2018. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115: 4033-4038.
- 108. Thakur, S., Singh, L., Wahid, Z.A., Siddiqui, M.F., Atnaw, S.M., Din, M.F.M., 2016. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 188: 206.
- 109. Tobin-Janzen, T., Shade, A., Marshall, L., Torres, K., Beblo, C., Janzen, C., Lenig, J., Martinez, A., Ressler, D., 2005. Nitrogen changes and domain bacteria ribotype diversity in soils overlying the Centralia, Pennsylvania underground coal mine fire. Soil Science, 170: 191-201.
- 110. Tripathi, N., Singh, R.S., Chaulya, S.K., 2012. Dump stability and soil fertility of a coal mine spoil in Indian dry tropical environment: a long-term study. Environmental Management, 50: 695-706.
- 111. Tschan, M., Robinson, B.H., Schulin, R., 2009. Antimony in the soil-plant system - a review. Environmental Chemistry, 6: 105-115.
- 112. Tyler, G., 2004. Rare earth elements in soil and plant systems - a review. Plant and Soil, 267: 191-206.
- 113. Vural, A., 2017. Gold and silver content of plant Helichrysum Arenarium, popularly known as the golden flower, growing in Gümüşhane, NE Turkey. Acta Physica Polonica A, 132: 978-980.
- 114. Wagner, M., 1980. Przemiany termiczne węgla kamiennego w strefach pożarów hałd kopalnianych (in Polish). Zeszyty Naukowe Akademii Górniczo-Hutniczej - Geologia, 6: 5-14.
- 115. Wang, N., Yang, C., Pan, Z., Liu, Y., Peng, S., 2015. Boron deficiency in woody plants: various responses and tolerance mechanisms. Frontiers in Plant Science 6.
- 116. Wang, S.L., Liao, W.B., Yu, F.Q., Liao B., Shu, W.S, 2009. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environmental Geology, 58: 471-476.
- 117. Wei, C., Deng, Q., Wu, F., Fu, Z., Xu, L., 2011. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China. Biological Trace Element Research, 144: 1150-1158.
- 118. Wei, S.H., Zhou, Q.X., Wang, X., 2005. Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating charac teristics. Huan Jing Ke Xue, 26: 167-171.
- 119. Welch, R.M., Huffman, W.D.Jr., 1973. Vanadium in plant nutrition. Plant Physiology, 52: 183-185.
- 120. Wiche, O., Zertani, V., Hentschel, W., Achtziger, R., Midula, P., 2017. Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). Journal of Geochemical Exploration, 175: 120-129.
- 121. Wierzbicka, M., Szarek-Łukaszewska, G., Grodzińska, K., 2004. Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety, 59: 84-88.
- 122. Wójcik, M., Sugier, P., Siebielec, G., 2014. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Science of the Total Environment, 487: 313-322.
- 123. Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M., L., Ghosh, S., Chen, Z., 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Sciences, 11: 359.
- 124. Yruela, I., 2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology, 36: 409-430.
- 125. Zając, E., Zarzycki, J., 2013. Wpływ aktywności termicznej zwałowiska odpadów węgla kamiennego na rozwój roślinności (in Polish). Rocznik Ochrona Środowiska, 15: 1862-1880.
- 126. Zhou, X., Sun, C., Zhu, P., Liu, F., 2018. Effect of antimony stress on photosynthesis and growth of Acorus cal a mus. Frontiers in Plant Science, 9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-262cc788-2500-4eb4-babd-3433d36a4aa2