PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of fish collagen on viscoelastic properties and sol-gel phase transition of chitosan solutions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermosensitive hydrogels are widely used in tissue engineering due to their non-invasive application. Special interest of researchers, due to the specific characteristics of both materials, is aimed at composites of natural origin obtained from chitosan hydrogels combined with collagen. The mechanical properties of the thermosensitive chitosan-fish collagen hydrogels and the sol-gel phase transition parameters were determined by the rotational rheometry measurement techniques. Based on comparison of the obtained storage modulus G' curves, it was found that the addition of collagen negatively affects the mechanical properties of composite scaffolds. The addition of this protein substance decreases their elasticity. Only the smallest concentration (0.25g collagen/1 g chitosan) of collagen improves the mechanical properties of composite hydrogels, from 56 kPa to 61 kPa. Conducted non-isothermal studies allowed to conclude that the addition of collagen causes an increasing temperature of sol-gel phase transition. However, the observed changes are not a monotone function of the biopolymer concentration.
Twórcy
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Chemical Engineering 213 Wolczanska str., 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Chemical Engineering 213 Wolczanska str., 90-924 Lodz, Poland
Bibliografia
  • [1] N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm. 50 (2000) 27–46. doi:10.1016/S0939-6411(00)00090-4.
  • [2] S.K.L. Levengood, M. Zhang, Chitosan-based scaffolds for bone tissue engineering, J. Mater. Chem. B. 2 (2014) 3161–3184. doi:10.1039/C4TB00027G.
  • [3] W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Deliv. Rev. 54 (2002) 13–36.
  • [4] D. Howard, L.D. Buttery, K.M. Shakesheff, S.J. Roberts, Tissue engineering: strategies, stem cells and scaffolds, J. Anat. 213 (2008) 66–72. doi:10.1111/j.1469-7580.2008.00878.x.
  • [5] J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials. 24 (2003) 4337–4351. doi:10.1016/S0142-9612(03)00340-5.
  • [6] B. Jeong, S.W. Kim, Y.H. Bae, Thermosensitive sol–gel reversible hydrogels, Adv. Drug Deliv. Rev. 64 (2012) 154–162. doi:10.1016/j.addr.2012.09.012.
  • [7] M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, S. Li, Y. Deng, N. He, Injectable hydrogels for cartilage and bone tissue engineering, Bone Res. 5 (2017) 17014. doi:10.1038/boneres.2017.14.
  • [8] A. Solouk, H. Mirzadeh, S. Amanpour, Injectable scaffold as minimally invasive technique for cartilage tissue engineering: in vitro and in vivo preliminary study, Prog. Biomater. 3 (2014) 143–151. doi:10.1007/s40204-014-0031-x.
  • [9] T. Garg, O. Singh, S. Arora, R. Murthy, Scaffold: a novel carrier for cell and drug delivery, Crit. Rev. Ther. Drug Carrier Syst. 29 (2012) 1–63.
  • [10] F.J. O’Brien, Biomaterials & scaffolds for tissue engineering, Mater. Today. 14 (2011) 88–95. doi:10.1016/S1369-7021(11)70058-X.
  • [11] T. Freier, H.S. Koh, K. Kazazian, M.S. Shoichet, Controlling cell adhesion and degradation of chitosan films by N-acetylation, Biomaterials. 26 (2005) 5872–5878. doi:10.1016/j.biomaterials.2005.02.033.
  • [12] Z. Chen, X. Mo, C. He, H. Wang, Intermolecular interactions in electrospun collagen–chitosan complex nanofibers, Carbohydr. Polym. 72 (2008) 410–418. doi:10.1016/j.carbpol.2007.09.018.
  • [13] K. Zhang, Y. Qian, H. Wang, L. Fan, C. Huang, A. Yin, X. Mo, Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application, J. Biomed. Mater. Res. A. 95A (2010) 870–881. doi:10.1002/jbm.a.32895.
  • [14] F. Yan, W. Yue, Y. Zhang, G. Mao, K. Gao, Z. Zuo, Y. Zhang, H. Lu, Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke, Neural Regen. Res. 10 (2015) 1421–1426. doi:10.4103/1673-5374.163466.
  • [15] L. Peng, X. R. Cheng, J. W. Wang, D. X. Xu, G. Wang, Preparation and Evaluation of Porous Chitosan/Collagen Scaffolds for Periodontal Tissue Engineering, J. Bioact. Compat. Polym. 21 (2006) 207–220. doi:10.1177/0883911506065100.
  • [16] Lie, C. Gao, Z. Mao, J. Shen, X. Hu, C. Han, Thermal dehydration treatment and glutaraldehyde crosslinking to increase the biostability of collagen–chitosan porous scaffolds used as dermal equivalent, J. Biomater. Sci. Polym. Ed. 14 (2003) 861–874. doi:10.1163/156856203768366576.
  • [17] C. Tangsadthakun, S. Kanokpanont, N. Sanchavanakit, T. Banaprasert, S. Damrongsakkul, Properties of collagen/chitosan scaffolds for skin tissue engineering, J. Met. Mater. Miner. 16 (2006). http://ojs.materialsconnex.com/index.php/jmmm/article/view/250 (accessed December 30, 2017).
  • [18] D. Wawro, W. Stęplewski, K. Brzoza-Malczewska, W. Święszkowski, Collagen-Modified Chitosan Fibres Intended for Scaffolds, Fibres Text. East. Eur. Nr 6B (96) (2012). http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-a6957882-f6a1-42d5-84e4-91cc971380e9 (accessed December 30, 2017).
  • [19] J. Elango, J. Zhang, B. Bao, K. Palaniyandi, S. Wang, W. Wenhui, J.S. Robinson, Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering, Int. J. Biol. Macromol. 91 (2016) 51–59. doi:10.1016/j.ijbiomac.2016.05.067.
  • [20] C.D.F. Moreira, S.M. Carvalho, H.S. Mansur, M.M. Pereira, Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering, Mater. Sci. Eng. C. 58 (2016) 1207–1216. doi:10.1016/j.msec.2015.09.075.
  • [21] P. Owczarz, A. Rył, Z. Modrzejewska, M. Dziubiński, The influence of the addition of collagen on the rheological properties of chitosan chloride solutions, Prog. Chem. Appl. Chitin Its Deriv. 22 (2017) 176–189. doi:10.15259/PCACD.22.18.
  • [22] R. Sripriya, R. Kumar, A Novel Enzymatic Method for Preparation and Characterization of Collagen Film from Swim Bladder of Fish Rohu (Labeo rohita), Food Nutr. Sci. 06 (2015) 1468. doi:10.4236/fns.2015.615151.
  • [23] S. Yamada, K. Yamamoto, T. Ikeda, K. Yanagiguchi, Y. Hayashi, Potency of Fish Collagen as a Scaffold for Regenerative Medicine, BioMed Res. Int. (2014). doi:10.1155/2014/302932.
  • [24] M.M. Schmidt, R.C.P. Dornelles, R. Mello, E.H. Kubota, M. Mazutti, A. Kempka, I. Demiate, Collagen extraction process, Int. Food Res. J. 23 (2016) 913–922.
  • [25] P. Owczarz, P. Ziółkowski, Z. Modrzejewska, S. Kuberski, M. Dziubiński, Rheo-Kinetic Study of Sol-Gel Phase Transition of Chitosan Colloidal Systems, Polymers. 10 (2018) 47. doi:10.3390/polym10010047.
  • [26] A. Chenite, M. Buschmann, D. Wang, C. Chaput, N. Kandani, Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions, Carbohydr. Polym. 46 (2001) 39–47. doi:10.1016/S0144-8617(00)00281-2.
  • [27] S. Supper, N. Anton, N. Seidel, M. Riemenschnitter, C. Schoch, T. Vandamme, Rheological Study of Chitosan/Polyol-phosphate Systems: Influence of the Polyol Part on the Thermo-Induced Gelation Mechanism, Langmuir. 29 (2013) 10229–10237. doi:10.1021/la401993q.
  • [28] F. Chambon, H.H. Winter, Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry, J. Rheol. 31 (1987) 683–697. doi:10.1122/1.549955.
  • [29] V. Vagenende, M.G.S. Yap, B.L. Trout, Mechanisms of Protein Stabilization and Prevention of Protein Aggregation by Glycerol, Biochemistry (Mosc.). 48 (2009) 11084–11096. doi:10.1021/bi900649t.
  • [30] V. Kumar, R. Chari, V.K. Sharma, D.S. Kalonia, Modulation of the thermodynamic stability of proteins by polyols: Significance of polyol hydrophobicity and impact on the chemical potential of water, Int. J. Pharm. 413 (2011) 19–28. doi:10.1016/j.ijpharm.2011.04.011.
  • [31] J. Cho, M.-C. Heuzey, A. Bégin, P.J. Carreau, Physical gelation of chitosan in the presence of betaglycerophosphate: the effect of temperature, Biomacromolecules. 6 (2005) 3267–3275. doi:10.1021/bm050313s.
  • [32] S. Kasapis, J. Mitchell, R. Abeysekera, W. MacNaughtan, Rubber-to-glass transitions in high sugar/biopolymer mixtures, Trends Food Sci. Technol. 15 (2004) 298–304. doi:10.1016/j.tifs.2003.09.021.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-262c6c50-e927-4bb1-b408-4418cd4b56c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.