Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, an irreversible thermodynamic model for the high temperature proton exchange membrane fuel cell taking electrochemical and heat losses into account is developed. The power density, exergy destruction index, exergy sustainability index and ecological coefficient of performance is derived. The model was validated against experimental data. The influence of parameters on the irreversible thermodynamic performance of high temperature proton exchange membrane fuel cell are considered. The multi-objective particle swarm optimization algorithm is utilized to optimize the power, ecological coefficient of performance and efficiency. The population distribution of the optimization variables was analyzed using a three-dimensional Pareto frontier analysis, and results show that the maximum power density, maximum efficiency and maximum ecological coefficient of performance being 6340 W/m2, 64.5% and 1.723 respectively, which are 43.28%, 3.7% and 17.8% higher than the preoptimized high temperature proton exchange membrane fuel cell. Moreover, the nondominated sorting genetic algorithm II and simulated annealing algorithm have been chosen versus multi-objective particle swarm optimization algorithm for making the optimization comparative analysis.
Czasopismo
Rocznik
Tom
Strony
197--208
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Nanjing Forestry University, College of Automobile & Traffic Engineering, 210037, China
autor
- Nanjing Forestry University, College of Automobile & Traffic Engineering, 210037, China
autor
- Nanjing Forestry University, College of Automobile & Traffic Engineering, 210037, China
autor
- Nanjing Forestry University, College of Automobile & Traffic Engineering, 210037, China
Bibliografia
- [1] Abdul Rasheed, R.K., Liao, Q., Caizhi, Z., & Chan, S.H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142–3165. doi: 10.1016/j.ijhydene.2016.10.078
- [2] Li, Y., Yang, M., Ma, Z., Zheng, M., Song, H., & Guo, X. (2022). Thermodynamic modeling and exergy analysis of a combined High-temperature proton exchange membrane fuel cell and ORC system for automotive applications. International Journal of Molecular Sciences, 23(24). doi: 10.3390/ijms232415813
- [3] Rosli, R.E., Sulong, A.B., Daud, W R. W., Zulkifley, M.A., Husaini, T., Rosli, M.I., Majlan, E.H., & Haque, M.A. (2017). A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy, 42(14), 9293–9314. doi: 10.1016/j.ijhydene.2016.06.211
- [4] Rosli, R.E., Sulong, A.B., Daud, W.R.W., Zulkifley, M.A., Husaini, T., Rosli, M.I., Majlan, E.H., & Haque, M.A. (2017). Modeling and analysis of a 5 kW HT-PEMFC system for residential heat and power generation. International Journal of Hydrogen Energy, 42(3), 1698–1714. doi: 10.1016/j.ijhydene.2016.10.152
- [5] Yang, M., & Tian, J. (2023). Longitudinal and Lateral Stability Control Strategies for ACC Systems of Differential Steering Electric Vehicles. Electronics, 12(19). doi: 10.3390/electronics12194178
- [6] Chen, Z., Zuo, W., Zhou, K., Li, Q., Huang, Y., & E, J. (2023). Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell. Energy, 278,127−982. doi: 10.1016/j.energy.2023.127982
- [7] Lei, G., Zheng, H., Zhang, J., Siong Chin, C., Xu, X., Zhou, W., & Zhang, C. (2023). Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect. Energy, 282, 128−305. doi: 10.1016/j.energy.2023.128305
- [8] Jannat, S., Rashtchi, H., Atapour, M., Golozar, M.A., Elmkhah, H., & Zhiani, M. (2019). Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells. Journal of Power Sources, 435, 226−818. doi:10.1016/j.jpowsour.2019.226818
- [9] Salimi Nanadegani, F., Nemati Lay, E., & Sunden, B. (2020). Computational analysis of the impact of a micro porous layer (MPL) on the characteristics of a high temperature PEMFC. Electrochimica Acta, 333, 135−552. doi: 10.1016/j.electacta.2019.135552
- [10] Atak, N.N., Dogan, B., & Yesilyurt, M.K. (2023). Investigation of the performance parameters for a PEMFC by thermodynamic analyses: Effects of operating temperature and pressure. Energy, 282, 128907. doi: 10.1016/j.energy.2023.128907
- [11] Chen, X., Xu, J., Yang, C., Fang, Y., Li, W., Zhang, Y., Wan, Z., & Wang, X. (2021). Thermodynamic and economic study of PEMFC stack considering degradation characteristic. Energy Conversion and Management, 235. doi: 10.1016/j.enconman.2021.114016
- [12] Lu, X., Du, B., Zhu, W., Yang, Y., Xie, C., Tu, Z., Zhao, B., Zhang, L., Song, J., & Deng, Z. (2023). Thermodynamic and dynamic analysis of a hybrid PEMFC-ORC combined heat and power (CHP) system. Energy Conversion and Management, 292,117408. doi: 10.1016/j.enconman.2023.117408
- [13] Özgür, T., & Yakaryilmaz, A. C. (2018). Thermodynamic analysis of a Proton Exchange Membrane fuel cell. International Journal of Hydrogen Energy, 43(38), 18007−18013. doi: 10.1016/j.ijhydene.2018.06.152
- [14] Wang, B., Wu, K., Xi, F., Xuan, J., Xie, X., Wang, X., & Jiao, K. (2019). Numerical analysis of operating conditions effects on PEMFC with anode recirculation. Energy, 173, 844−856. doi:10.1016/j.energy.2019.02.115
- [15] Xia, S., Lin, R., Cui, X., & Shan, J. (2016). The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition. International Journal of Hydrogen Energy, 41(26), 11380−11390. doi: 10.1016/j.ijhydene.2016.04.140
- [16] Chen, X., Li, W., Gong, G., Wan, Z., & Tu, Z. (2017). Parametric analysis and optimization of PEMFC system for maximum power and efficiency using MOEA/D. Applied Thermal Engineering,121, 400−409. doi: 10.1016/j.applthermaleng.2017.03.144
- [17] Xu, H., Song, H., Xu, C., Wu, X., & Yousefi, N. (2020). Exergy analysis and optimization of a HT-PEMFC using developed Manta Ray Foraging Optimization Algorithm. International Journal of Hydrogen Energy, 45(55), 30932−30941. doi:10.1016/j.ijhydene.2020.08.053
- [18] Lin, D., Yehong, H., & Khodaei, H. (2020). Application of the meta-heuristics for optimizing exergy of a HT-PEMFC. International Journal of Energy Research, 44(5), 3749−3761. doi:10.1002/er.5163
- [19] Ehyaei, M.A., Ahmadi, A., El Haj Assad, M., & Salameh, T. (2019). Optimization of parabolic through collector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and economic analyses. Journal of Cleaner Production, 234, 285−296. doi: 10.1016/j.jclepro.2019.06.210
- [20] Yuan, X., Liu, Y., & Bucknall, R. (2021). Optimised MOPSO with the grey relationship analysis for the multi-criteria objective energy dispatch of a novel SOFC-solar hybrid CCHP residential system in the UK. Energy Conversion and Management, 243. doi:10.1016/j.enconman.2021.114406
- [21] Thosar, A.U., Agarwal, H., Govarthan, S., & Lele, A.K. (2019). Comprehensive analytical model for polarization curve of a PEM fuel cell and experimental validation. Chemical Engineering Science, 206, 96−117. doi: 10.1016/j.ces.2019.05.022
- [22] Guo, Y., Guo, X., Zhang, H., & Hou, S. (2020). Energetic, exergetic and ecological analyses of a high-temperature proton exchange membrane fuel cell based on a phosphoric-acid-doped polybenzimidazole membrane. Sustainable Energy Technologies and Assessments, doi: 10.1016/j.seta.2020.100671
- [23] Li, D., Li, S., Ma, Z., Xu, B., Lu, Z., Li, Y., & Zheng, M. (2021). Ecological Performance Optimization of a High Temperature Proton Exchange Membrane Fuel Cell. Mathematics, 9(12). doi:10.3390/math9121332
- [24] Scott, K., Pilditch, S., & Mamlouk, M. (2007). Modelling and experimental validation of a high temperature polymer electrolyte fuel cell. Journal of Applied Electrochemistry, 37(11),1245−1259. doi: 10.1007/s10800-007-9414-1
Uwagi
[1] The research was supported by the financial support of the National Natural Science Foundation of China (No. 51306079 and 51176069), the Postgraduate Research & Practice Innovation Program of Jiangsu Province and Scientific Research Foundation of Nanjing Forestry University (No. GXL2018004).
[2] Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26268968-c24a-499f-988d-4bf03898c313
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.