PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquid phase microextraction techniques combined with chromatography analysis: a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sample pretreatment is the first and the most important step of an analytical procedure. In routine analysis, liquid–liquid microextraction (LLE) is the most widely used sample pre-treatment technique, whose goal is to isolate the target analytes, provide enrichment, with cleanup to lower the chemical noise, and enhance the signal. The use of extensive volumes of hazardous organic solvents and production of large amounts of waste make LLE procedures unsuitable for modern, highly automated laboratories, expensive, and environmentally unfriendly. In the past two decades, liquid-phase microextraction (LPME) was introduced to overcome these drawbacks. Thanks to the need of only a few microliters of extraction solvent, LPME techniques have been widely adopted by the scientific community. The aim of this review is to report on the state-of-the-art LPME techniques used in gas and liquid chromatography. Attention was paid to the classification of the LPME operating modes, to the historical contextualization of LPME applications, and to the advantages of microextraction in methods respecting the value of green analytical chemistry. Technical aspects such as description of methodology selected in method development for routine use, specific variants of LPME developed for complex matrices, derivatization, and enrichment techniques are also discussed.
Rocznik
Strony
69--79
Opis fizyczny
Bibliogr. 162 poz., rys.
Twórcy
  • Careggi University Hospital, Florence, Italy
autor
  • University of Florence, Florence, Italy
  • University of Florence, Florence, Italy
  • University of Cagliari, Cagliari, Italy
  • University of Florence, Florence, Italy
  • University of Florence, Florence, Italy
  • University of Pavia, Pavia, Italy
  • University of Pavia, Pavia, Italy
  • University of Florence, Florence, Italy
Bibliografia
  • [1.] Barfi, B.; Asghari, A.; Rajabi, M.; Mirkhani, N. RSC Adv. 2015, 5, 106574–106588.
  • [2.] Baranda, B.; Etexbarria, N.; Jimenez, R. M.; Alonso, R. M. Talanta 2005, 933.
  • [3.] Duran, C.; Ozdes, D.; Sahin, D.; Bulut, V. N.; Gundogdu, A.; Soylak, M. Microchem. J. 2011, 98, 317–322.
  • [4.] Alexovic, M.; Horstkotte, B.; Solich, P. Anal. Chim. Acta 2016, 906, 22e40.
  • [5.] Dugheri, S.; Bonari, A.; Pompilio, I.; Colpo, M.; Mucci, N.; Montalti, M.; Arcangeli, G. Acta Chromatogr. 2017, 29, 511–514.
  • [6.] Dugheri, S.; Palli, L. B.; Bossi, C. C.; Bonari, A. C.; Mucci, N. C.; Santianni, D. D.; Arcangeli, G. C.; Sirini, P. B.; Gori, R. Fresen. Environ. Bull. 2018, 27, 6394–6402.
  • [7.] Frizzarin, R. M.; Portugal, L. A.; Estela, J. M; Rocha, F. R. P.; Cerd, V. Talanta 2016, 148, 694–699.
  • [8.] Lord, H.; Pawliszyn, J. Chromatogr. A 2000, 885, 153–193.
  • [9.] Dugheri, S.; Mucci, N.; Bonari, A. Marrubini, G.; Cappelli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Acta Chromatogr. 2019, in press.
  • [10.] Pacenti, M.; Dugheri, S.; Gagliano-Candela, R.; Strisciullo, G.; Franchi, E.; Degli Esposti, F.; Cupelli, V. Acta Chromatogr. 2009, 21, 379–397.
  • [11.] de Rijke, E.; Out, P.; Niessen, W. M.; Ariese, F.; Gooijer, C.; Udo, A. T. J. Chromatogr. A 2006, 1112, 31–63.
  • [12.] Sarafraz-Yazdi, A.; Amiri, A. TrAC Trend. Anal. Chem. 2010, 29, 1–14.
  • [13.] Liu, S.; Dasgupta, P. K. Anal. Chem. 1995, 67, 2042–2049..
  • [14.] Liu, H.; Dasgupta, P. K. Anal. Chim. Acta 1996, 326, 13–22.
  • [15.] Jeannot, M. A.; Cantwell, F. F. Anal. Chem. 1997, 69, 235–239.
  • [16.] Audunsson G. Anal. Chem. 1986, 58, 714–2723.
  • [17.] Thordarson, E.; Palmarsdottir, S.; Mathiasson, L.; Jonsson, J. Å. Anal. Chem. 68, 1996, 2559–2563.
  • [18.] Pedersen-Bjergaard, S.; Rasmussen, K. E. Anal. Chem. 1999, 71, 2650–2656.
  • [19.] Rezaee, M.; Assadi, Y.; Milani Hosseini, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S. J. Chromatogr. A 2006, 1116, 1–9.
  • [20.] Mookantsa, S. O. S.; Dube, S.; Nindi, M. M. Talanta 2016, 148, 321–328.
  • [21.] Viñas, P.; Campillo, N.; Andruch, V. TrAC, Trends Analyt. Chem. 2015, 68, 48–77.
  • [22.] Rahmani, M.; Ghasemi, E.; Sasani, M. Talanta 2017, 165, 27–32.
  • [23.] Timofeeva, I.; Timofeev, S.; Moskvin, L.; Bulatov, A. Anal. Chim. Acta 2017, 949, 35–42.
  • [24.] Sorouraddin, S. M.; Farajzadeh, M. A.; Okhravi, T. Talanta 2017, 175, 359–365.
  • [25.] Asadi, M.; Dadfarnia, S.; Haji Shabani, A. M. Anal. Chim. Acta 2016, 932, 22–28.
  • [26.] Yang, P.; Li, H.; Wang, H.; Han, F.; Jing, S.; Yuan, C.; Xu, Z. Food Anal. Methods 2017, 1–15.
  • [27.] Sena, L. C. S.; Matos, H. R.; Dórea, H. S.; Pimentel, M. F.; de Santana, D. C. A. S.; de Santana, F. J. M. Toxicology 2017, 376, 102–112.
  • [28.] Farajzadeh, M. A.; Feriduni, B.; Mogaddam, M. R. A. Talanta 2016, 146, 772–779.
  • [29.] An, J.; Trujillo-Rodriguez, M.; Pino, V.; Anderson, J. J. Chromatogr. A 2017, 1500, 1–23.
  • [30.] Pena-Pereira, F.; Namiesnik, J. ChemSusChem 2014, 7, 1784–1800.
  • [31.] Plotka-Wasylka, J.; Rutkowska, M.; Owczarek, K.; Tobiszewski, M.; Namiesnik, J. Trends Anal. Chem. 2017, 91, 12–25.
  • [32.] Shishov, A.; Bulatov, A.; Locatelli, M.; Carradori, S.; Andruch, V. Microchem. J. 2017, 135, 33–38.
  • [33.] Lambropoulou, D. A.; Albanis, T. A. J. Biochem. Biophys. Methods. 2007, 10, 195–228.
  • [34.] Wang, Z.; Huang, J. Ultrason. Sonochem. 2018, 754–758.
  • [35.] Soylak M. Talanta 2014, 126, 191–195.
  • [36.] Karimi, M.; Dadfarnian, S.; Shabani, A. M. H.; Tamaddon, F.; Azadi, D. Talanta 2015, 144, 648–654.
  • [37.] Lasarte-Aragones, G.; Lucena, R.; Cardenas, S.; Valcarcel, M. Talanta 2015, 131, 645–649.
  • [38.] Murata, K.; Yokoyama, Y.; Ikeda, S. Anal. Chem. 1972, 44, 805–810.
  • [39.] Matkovich, C. E; Christian, G. D. Anal. Chem. 1974, 46, 102–106.
  • [40.] toxnet.nlm.nih.gov (2018) National Library of Medicine, ChemLDplus. [online] Available at: https://chem.nlm.nih.gov/chemidplus/chemidlite.jsp.
  • [41.] epa.gov (2018) US Environmental Protection Agency, EPA on-line tools for site assessment calculation. [online] Available at: https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/.
  • [42.] ddbst.de (2018) Dortmund Data Bank [online] Available at: http://www.ddbst.de/.
  • [43.] SPARC Performs Automated Reasoning in Chemistry (2018) [on line] Available at http://www.archemcalc.com/sparc.html.
  • [44.] UNIFAC, Modified UNIFAC (Dortmund), PSRK, VTPR [online] Available at: http://unifac.ddbst.de/.
  • [45.] Xu, L.; Basheer, C.; Lee, H. K. J. Chromatogr. A 2009, 1216, 701–707.
  • [46.] Afkhami, A.; Madrakian, T.; Siampour, H. J. Hazard. Mater. 2006, 138, 269.
  • [47.] Moghimi A. J. Chin. Chem. Soc. 2008, 55, 369.
  • [48.] Shemirani, F.; Kozani, R. R.; Assadi, Y. Microchim. Acta 2007, 157, 81.
  • [49.] Fan Z. F. Microchim. Acta 2005, 152, 29.
  • [50.] Anthemidis, A. N.; Ioannou, K. I. G. Talanta 2009, 80, 413–421.
  • [51.] Li, M.-J.; Zhang, H.-Y.; Liu, X.-Z; Cui, C.-Y.; Shi, Z.-H. Chin. J. Anal. Chem. 2015, 43, 1231–1240.
  • [52.] Kocúrova, L.; Balogh, I. S.; Sandrejov, A. J.; Andruch, V. J. Microchem. 2012, 102, 11–17.
  • [53.] Liang, T. T.; Lv, Z. H.; Jiang, T. F.; Wang, H. Y. Electrophoresis 2013, 34, 345–352.
  • [54.] Teglia, C. M.; Gonzalo, L.; Culzoni, M. J.; Goicoechea, H. C. Food Chem. 2019, 273, 194–202.
  • [55.] Mansour, F. R.; Danielson, N. D. Talanta 2017, 170, 22–35.
  • [56.] Havlikova, M.; Cabala, R.; Pacakova, V.; Bursova, M.; Bosakova, Z. J. Sep. Sci. 2018, 273–284.
  • [57.] Gomes, R. D. P.; Pena, C. B.; Rezende, J.; Coutrim, M. X.; Afonso, R. J. D. C. F. J. Sep. Sci. 2017, 40, 550–557.
  • [58.] Fatemi, M. H.; Hadjmohammadi, M. R.; Shakeri, P.; Biparva, P. J. Sep. Sci. 2012, 35, 86–92.
  • [59.] Aguilera-Herrador, E.; Lucena, R.; Cárdenas, S.; Valcárcel, M. TrAC-Trends Anal. Chem. 2010, 29, 602–616.
  • [60.] Berthod, A.; Ruiz-Ángel, M. J.; Carda-Broch, S. J. Chromatogr. A, 2018, 1559, 2–16.
  • [61.] Amoli-Diva, M.; Taherimaslak, Z.; Allahyari, M.; Pourghazi, K.; Manafi, M. H. Talanta 2015, 134, 98–104.
  • [62.] Vakh, C.; Pochivalov, A.; Andruch, V.; Moskvin, L.; Bulatov, A. Anal. Chim. Acta 2016, 907, 54–59.
  • [63.] Melwanki, M. B.; Hsu, W. H.; Huang, S. D. Anal. Chim. Acta 2005, 552, 67–75.
  • [64.] Sun, J.; Feng, J.; Shi, L.; Liu, L.; He, H.; Fan, Y.; Liu, S. J. Chromatogr. A 2016, 1461, 161–170.
  • [65.] Kokosa, J. M.; Przyjazny, A.; Jeannot, M. A., Solvent Microextraction: Theory and Practice, J. Wiley and Sons, Inc., 2009.
  • [66.] Horstkotte, B.; Suarez, R.; Solich, P.; Cerd, V. Anal. Chim. Acta 2013, 788, 52–60.
  • [67.] Regueiro, J.; Llompart, M.; Garcia-Jares, C.; Garcia-Monteagudo, J. C.; Cela, R. J. Chromatogr. A 2008, 1190, 27–38.
  • [68.] Makahleh, A.; Yap, H. F.; Saad, B. Talanta 2015, 143, 394–401.
  • [69.] Yuan, Y.-Y.; Wang, Y.; Yang, M. et al. J. Sep. Sci. 2018, 41, 2261–2268.
  • [70.] Campillo, N.; Vi~nas, P.; Martínez-Castillo, N.; Hernandez-Cordoba, M. J. Chromatogr. A 2011, 1218, 1815–1821.
  • [71.] Huang, P.; Zhao, P.; Dai, X.; Hou, X.; Zhao, L.; Liang, N. J. Chromatogr. B 2016, 136–144.
  • [72.] Wang, K.; Xie, X.; Zhang, Y.; Huang, Y.; Zhou, S.; Zhang, W., et al. Food Chem. 2018, 240, 1233–1242.
  • [73.] Naeeni, M. H.; Yamini, Y.; Rezaee, M. J. Supercrit. Fluids 2011, 57, 219–226.
  • [74.] Yuan, K.; Kang, H.; Yue, Z.; Yang, L.; Lin, L.; Wang, X., et al. Anal. Chim. Acta 2015, 866, 41–47.
  • [75.] Cai, K.; Hu, D.; Lei, B.; Zhao, H.; Pan, W.; Song, B. Anal. Chim. Acta 2015, 882, 90–100.
  • [76.] Zhang, P.-P.; Shi, Yu; Yu, Q.-W.; Feng, Y.-Q., et al. Talanta 2011, 83, 1711–1715.
  • [77.] Farajzadeh, M. A.; Mogaddam, M. R. A. Anal. Chim. Acta. 2012, 728, 31–38.
  • [78.] Chu, S.; Tseng, W.; Kong, P.; Huang, C.; Chen, J.; Chen, P.; Huang, S. Food Chem. 2015, 185, 377–382.
  • [79.] Chen, P.-S.; Haung, W.-Y.; Huang, S.-D. J. Chromatogr. B 2014, 116–123.
  • [80.] Nascimento, C. F.; Brasil, M. A. S.; Costa, S. P. F.; Pinto, P. C. A. G.; Saraiva, M. L. M. F. S.; Rocha, F. R. P. Talanta 2015, 144, 1189–1194.
  • [81.] Alexovic, M.; Wieczorek, M.; Kozak, J.; Koscielniak, P.; Balogh, I. S.; Andruch, V. Talanta 2015, 133, 127–133.
  • [82.] Mofazzeli, F.; Asaadi Shirvan, H.; Mohammadi, F. J. Sep. Sci. 2018, 4340–4347.
  • [83.] Nie, J; Chen, F; Song, Z; Sun, C; Li, Z; Liu, W; Lee, M. Anal. Bioanal. Chem. 2016, 408, 7461–71.
  • [84.] Lasarte-Aragones, G.; Lucena, R.; Cardenas, S.; Valcarcel, M. Anal. Chim. Acta. 2014, 807, 61–66.
  • [85.] Zhou, Q.; Jin, Z.; Li, J.; Wang, B.; Wei, X.; Chen, J. Talanta 2018, 1, 116–121.
  • [86.] Alexovič, M.; Horstkotte, B.; Šrámková, I.; Solich, P.; Sabo, J. TrAC Trends Anal. Chem. 2017, 86, 39–55.
  • [87.] Mirparizi, E.; Rajabi, M.; Bazregar, M.; Asghari, A. Anal. Bioanal. Chem. 2017, 409, 3007–3016.
  • [88.] Beiraghi, A.; Shokri, M.; Seidi, S. B. M., et al. J. Chromatogr. A 2015, 1376, 1–8.
  • [89.] Barrett, C. A.; Orban, D. A.; Seebeck, S. E.; Lowe, L. E.; Owens, J. E. J. Sep. Sci. 2015, 14, 2503–2509.
  • [90.] Seebunrueng, K.; Santaladchaiyakit, Y.; Srijaranai, S. Talanta 2015, 132, 769–774.
  • [91.] Yang, D.; Li, G.; Wu, L.; Yang, Y. Food Chem. 2018, 30, 96–102.
  • [92.] Chen, H.; Chen, R.; Li, S. J. Chromatogr. A 2010, 1217, 1244–1248.
  • [93.] Mansour, F. R.; Danielson, N. D. Anal. Chim. Acta 2018, 170, 22–35.
  • [94.] Igarashi, S.; Yotsuyanagi, T. Mikrochim. Acta 1992, 106, 37–44.
  • [95.] Zhang, Z.; Xu, G.; Wang, F.; Dong, S.; Chen, Y. J. Colloid Interface Sci. 2005, 282, 1–4.
  • [96.] Feng, X.; Xu, Z.; Masliyah, J. Energy Fuels 2009, 23, 451–456.
  • [97.] Bulatov, A.; Medinskaia, K.; Aseeva, D.; Garmonov, S.; Moskvin, L. Talanta 2015, 133, 66–70.
  • [98.] Guo, L.; Chia, S. H.; Lee, H. K. Anal. Chem. 2016, 88, 2548–2552.
  • [99.] Chen, C. M.; Lu, C. H.; Chang, C. H.; Yang, Y. M.; Maa, J. R. Colloid. Surf. A 2000, 170, 173–179.
  • [100.] Bhardwaj, A.; Hartland, S. J. Disper. Sci. Technol. 1993, 14, 541–557.
  • [101.] Goldszal, A.; Bourrel, M. Ind. Eng. Chem. Res. 2000, 39, 2746–2751.
  • [102.] Han, D.; Tang, B.; Ri Lee, Y.; Ho Row, K. J. Sep. Sci. 2012, 35, 2949–2961.
  • [103.] Moradi, M.; Yamini, Y.; Rezaei, F.; Tahmasebi, E.; Esrafili, A. Analyst 2012, 137, 3549–3557.
  • [104.] Moreda-Piñeiro, J.; Moreda-Piñeiro, A. TrAC Trend. Anal. Chem. 2015, 71, 265–274.
  • [105.] Lambropoulou, D. A.; Albanis, T. A. J. Chromatogr A 2005, 1072, 55–61.
  • [106.] Ramos, P. M.; Bello López, M. Á.; Fernández-Torres, R.; González, J. A.; Callejón, M. M. J. Pharm. Biomed. Anal. 2011, 55, 332–341.
  • [107.] Borijihan, G.; Li, Y.; Gao, J.; Bao, J. J. J. Sep. Sci. 2014, 37, 1155–1161.
  • [108.] Zhao, L.; Lee, H. K. Anal. Chem. 2002, 74, 2486–92.
  • [109.] Hou, L.; Lee, H. K. J. Chromatogr. A. 2004, 1038, 37–42.
  • [110.] Jiang, X.; Lee, H. K. Anal. Chem. 2004, 76, 5591–5596.
  • [111.] Ghasemi E. J. Chromatogr. A 2012, 1251, 48–53.
  • [112.] Ara, K. M.; Akhoondpouramiri, Z.; Raofie, F.; Akhoondpouramiri, Z.; Raofie, F. J. Chromatogr. B 2013, 931, 148–156.
  • [113.] Lopez-Lopez, J. A.; Herce-Sesa, B.; Moreno, C. Talanta 2015, 132, 382–386.
  • [114.] Ji, B.; Xia, B.; Fu, X.; Lei, S.; Ye, Y.; Zhou, Y. Anal. Chim. Acta. 2018, 2, 42–48.
  • [115.] Myung, S.-W.; Yoon, S.-H.; Kim, M. Analyst 2003, 128, 1443–1446.
  • [116.] Shen, G.; Lee, H. K. Anal. Chem. 2003, 75, 98–103.
  • [117.] Jeannot, M. A.; Przyjazny, A.; Kokosa, J. M. J. Chromatogr. A 2010, 1217, 2326–2336.
  • [118.] Kokosa J. M. Trac-Trends Anal. Chem. 2015, 71, 194–204.
  • [119.] Liu, W. P.; Lee, H. K. Anal. Chem. 2000, 72, 4462–4467.
  • [120.] Wu, H. F.; Yen, J. H.; Chin, C. C. Anal. Chem. 2006, 78, 1707–1712.
  • [121.] Mingyuan ; Yangcheng, L.; Guangsheng, L. Anal. Chim. Acta 2009, 648, 123–127.
  • [122.] Li, X.; Xue, A.; Chen, H.; Li, S. J. Chromatogr. A, 2013, 1280, 9–15.
  • [123.] Zanjani, M. R. K.; Yamini, Y.; Shariati, S.; Jonsson, J. A. Anal. Chim. Acta 2007, 585, 286–293.
  • [124.] Kokosa J. M. TrAC Trends Anal. Chem. 2013, 43, 2–13.
  • [125.] Vidal, L.; Chisvert, A.; Canals, A.; Salvador, A. J. Chromatogr. A 2007, 1174, 95–103.
  • [126.] Yao, C.; Twu, P.; Anderson, J. L. Chromatographia, 2010, 72, 5–6, 393–402.
  • [127.] Guo, L.; Kee Lee, H. Anal. Chem. 2014, 86, 3743–3749.
  • [128.] Alexoviča, M.; Dotsikasb, Y.; Bobera, P.; Sabo, J. J. Chromatogr. B 2018, 1092, 402–421.
  • [129.] Ferreira, A. M. C.; Laespada, M. E. F., Pavón, J. L. P; Cordero, B. M. J. Chromatogr. A 2013, 1296, 70–83.
  • [130.] Little J. L J. Chromatogr. A 1999, 844, 1–22.
  • [131.] Molnár-Perl I. J. Chromatogr. A 2000, 891, 1–32.
  • [132.] Podolec, P.; Szabó, A. H.; Blaˇsko, J., et al. J. Chromatogr. B 2014, 967, 134–138.
  • [133.] Saraji, M.; Mousavinia, F. J. Sep. Sci. 2006.
  • [134.] Hu, M.; Chen, H.; Jiang, Y.; Zhu, H. Chem Papers 2013, 67, 1255–1261.
  • [135.] Saraji, M.; Farajmand, B. J. Chromatogr. A 2008, 1178, 17–23.
  • [136.] Tsai, C. J.; Liao, F. Y.; Weng, J. R.; Feng, C. H. J. Chromatogr. A 2017, 1524, 29–36.
  • [137.] Liebich, H. M.; Gesele, E. J. Chromatogr. A 1999, 843, 237–24.
  • [138.] Ammazzini, S.; Onor, M.; Pagliano, E., et al. J. Chromatogr. A 2015, 1400, 124–130.
  • [139.] Takeuchi, A.; Namera, A.; Sakui, N.; Yamamoto, S.; Yamamuro, K.; Nishinoiri, O.; Endo, Y.; Endo, G. J. Occup. Health 2019, 61, 82–90.
  • [140.] Chiang, J. S.; Huang, S. D. J. Chromatogr. A 2008, 1185, 19–22.
  • [141.] Chunhui, D.; Ning, Y.; Ning, L.; Xiangmin, Z. J. Sep. Sci. 2005, 28, 2301–5.
  • [142.] Hušek, P.; Švagera, Z.; Hanzlíková, D.; Karlínová, I.; Šimek, P., in Metabolic Profiling, 2018, 159–181.
  • [143.] Fiamegos, Y. C.; Stalikas, C. D. Anal. Chim. Acta 2005, 550.
  • [144.] Fiamegos, Y. C.; Kefala, A.-P.; Stalikas, C. D. J. Chromatogr. A 2008, 1190, 44.
  • [145.] Backe, W. J.; Day, T. C.; Field, J. A. Environ. Sci. Technol. 2013, 47, 5226–5234.
  • [146.] Busetti, F.; Backe, W. J.; Bendixen, N.; Maier, U., et al. Anal. Bioanal. Chem., 2012, 402, 175–186.
  • [147.] Hogendoorn, E. A.; Dejong, A.; Vanzoonen, P.; Brinkman, U. A. T. J. Chromatogr. 1990, 511, 243–256.
  • [148.] Hogendoorn, E. A.; Hoogerbrugge, R.; Baumann, R. A.; Meiring, H. D.; de Jong, A.; van Zoonen, P. J. Chromatogr. A 1996, 754, 49–60.
  • [149.] Pollettini, A.; Montagna, M.; Hogendoorn, E.; Dijkman, E.; Vanzoonen, P.; Vanginkel, L. J. Chromatogr. A 1995, 695, 19–31.
  • [150.] Hogendoorn, E.; van Zoonen, P.; Polettini, A.; Bouland, G.; Montagna, M. Anal. Chem. 1998, 70, 1362–1368.
  • [151.] Marrubini, G.; Hogendoorn, E. A.; Coccini, T.; Manzo, L. J. Chromatogr. B 2001, 751, 331–339.
  • [152.] Cavalli, S.; Polesello, S.; Saccani, G. J. Chromatogr. A 2004, 1039, 155–159.
  • [153.] Chalanyova, M.; Paulechova, M.; Hutta, M. J. Sep. Sci. 2006, 29, 2149–2157.
  • [154.] Hutta, M.; Chalanyova, M.; Halko, R.; Gora, R.; Rybar, I.; Pajchl, M.; Dokupilova, S. J. Sep. Sci. 2006, 29, 1977–1987.
  • [155.] Quintana, J. B.; Reemtsma, T. J. Chromatogr. A 2007, 1145, 110–117.
  • [156.] Cacho, J. I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. J. Chromatogr. A, 2016, 1456, 27–33.
  • [157.] Gałuszka, A.; Migaszewski, Z. M.; Konieczka, P.; Namiesnik, J. Trends Anal. Chem. 2012, 37, 61–72.
  • [158.] Plotka–Wasylka J. Talanta 2018, 181, 204–209.
  • [159.] Tobiszewski M. Anal Methods 2016, 8, 2993–2999.
  • [160.] Tobiszewski, M.; Nedyalkova, M.; Madurga, S.; Pena-Pereira, F.; Namiesnik, J.; Simeonov, V. Ecotox. Environ. Safe 2018, 147, 292–298.
  • [161.] Shabaan, H.; Mostafa, A. J. AOAC Int. 2018, 101, 1781–1787.
  • [162.] Plotka-Wasylka, J.; Kurowska-Susdorf, A.; Sajid, M.; de Guardia, M.; Namiesnik, J.; Tobiszewski, M. Chemsuschem 2018, 11, 2845–2858.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26267898-d6c8-49f0-9620-17fde3c914c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.