PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Constitutive modelling effect on the numerical prediction of springback due to a stretch-bending test applied on titanium T40 alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, numerical simulation by finite element analysis is an essential tool that allows performing virtually sheet metal forming processes, and therefore to reproduce various phenomena such as springback (SB) and necking that are generated by plastic deformation. However, the quality of the model used to represent the mechanical behaviour is a determining factor for the realism of numerical simulations. To perform well, the model must reproduce all the properties of the material such as the anisotropy and the strain hardening induced by plastic deformation. The main purpose of this work is to show, by means of numerical simulations, the influence of constitutive modelling on the prediction of the degree of SB in the case of a stretch bending test. Tests have been carried out on titanium sheets which have a wide range of applications for high tech industries because of specific mechanical and physical properties. At the same time, we have investigated the dependence of some process parameters such as the clamping force on SB. In order to prove the accuracy and reliability of the proposed finite element model, experimental data were used to compare with the numerical results.
Rocznik
Strony
836--846
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratoire de Physique et Mécanique des Matériaux Métalliques, Institut d’Optique et Mécanique de Précision, Université Ferhat Abbas Sétif 1, 19000, Algeria
autor
  • Laboratoire SYMME, Université de Savoie, 74944 Annecy-le-Vieux, France
autor
  • Laboratoire SYMME, Université de Savoie, 74944 Annecy-le-Vieux, France
autor
  • Laboratoire de Physique et Mécanique des Matériaux Métalliques, Institut d’Optique et Mécanique de Précision, Université Ferhat Abbas Sétif 1, 19000, Algeria
autor
  • Laboratoire SYMME, Université de Savoie, 74944 Annecy-le-Vieux, France
autor
  • Laboratoire SYMME, Université de Savoie, 74944 Annecy-le-Vieux, France
Bibliografia
  • [1] H. Schilp, J. Suh, H. Hoffmann, Reduction of springback using simultaneous stretch-bending processes, International Journal of Material Forming 5 (2012) 175–180.
  • [2] N. Nanu, G. Brabie, Influence of material properties on the interaction between residual stress and springback in the case of in plane sheets forming, Archives of Civil and Mechanical Engineering XI (4) (2011) 979–990.
  • [3] A. Albut, G. Brabie, The influence of the rolling direction of the joined steel sheets on the springback intensity in the case of V-shape parts made from tailor welded strips, Archives of Civil and Mechanical Engineering VI (3) (2006) 5–12.
  • [4] F. Stachowicz, T. Trzepieciński, Warm forming of stainless steel sheet, Archives of Civil and Mechanical Engineering X (4) (2010) 85–94.
  • [5] C. Xia, C.E. Miller, F. Ren, Springback behavior of AA6111-T4 with split-ring test, in: Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, NUMIFORM '04, 2004, 934–939.
  • [6] E.H. Ouakdi, R. Louahdi, D. Khirani, L. Tabourot, Evaluation of springback under the effect of holding force and die radius in a stretch bending test, Materials & Design 35 (2012) 106–112.
  • [7] R.K. Verma, A. Haldar, Effect of normal anisotropy on springback, Journal of Materials Processing Technology 190 (2007) 300–304.
  • [8] P. Balland, C. Déprés, R. Billard, L. Tabourot, Physically Based Kinematic Hardening Modelling of Single Crystal, American Institute of Physics, 2011, pp. 91–96.
  • [9] L. Tabourot, P. Balland, J. Raujol-Veillé, M. Vautrot, C. Déprés, F. Toussaint, Compartmentalized model for the mechanical behavior of Titanium, Key Engineering Materials 504–506 (2012) 673–678.
  • [10] L. Tabourot, P. Balland, M. Vautrot, O.S. Hopperstad, J. Raujol- Veillé, F. Toussaint, Characterization and modeling of the elastic behavior of a XC68 grade steel used at high strain rates and high temperatures, Key Engineering Materials 554 (2013) 1116–1124.
  • [11] L. Tabourot, P. Balland, N.A. Sène, M. Vautrot, N. Ksiksi, A. Maati, Numerical study of the impact of constitutive modelling on the evolution of necking in the case of a tensile test on C68 grade steel, Key Engineering Materials 611–612 (2014) 521–528.
  • [12] P. Vacher, S. Dumoulin, F. Morestin, S. Mguil-Touchal, Bidimensional strain measurement using digital images, Proceedings of the Institution of Mechanical Engineers 213 (1999) 811–817.
  • [13] R. Hill, A theory of the yielding and plastic flow of anisotropic metal, Proceedings of Royal Society of London A (193) (1948) 281–297.
  • [14] F. Toussaint, L. Tabourot, F. Ducher, Experimental and numerical analysis of the forming process of a CP titanium scoliotic instrumentation, Journal of Materials Processing Technology 19 (2008) 10–16.
  • [15] C. Déprés, M. Fivel, L. Tabourot, A dislocation-based model for low-amplitude fatigue behaviour of face-centred cubic single crystals, Scripta Materialia 58 (12) (2008) 1086–1089.
  • [16] T. Furushima, H. Tsunezaki, T. Nakayama, K. Manabe, S. Alexsandrov, Prediction of surface roughening and necking behavior for metal foils by inhomogeneous FE material modeling, Key Engineering Materials 554–557 (2013) 169–173.
  • [17] R. Kellermann, H.C. Klein, Studies of the Influence of Friction on Preload and Tightening Torque of Bolt Connections. Construction, vol. 2, Springer, 1955.
  • [18] K.P. Li, W.P. Carden, R.H. Wagoner, Simulation of springback, International Journal of Mechanical Sciences 44 (2002) 103–122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2625345d-9aac-4edf-8bfb-e37bfb0f1fc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.