PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A data-driven predictive maintenance strategy based on accurate failure prognostics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Maintenance is fundamental to ensure the safety, reliability and availability of engineering systems, and predictive maintenance is the leading one in maintenance technology. This paper aims to develop a novel data-driven predictive maintenance strategy that can make appropriate maintenance decisions for repairable complex engineering systems. The proposed strategy includes degradation feature selection and degradation prognostic modeling modules to achieve accurate failure prognostics. For maintenance decision-making, the perfect time for taking maintenance activities is determined by evaluating the maintenance cost online that has taken into account of the failure prognostic results of performance degradation. The feasibility and effectiveness of the proposed strategy is confirmed using the NASA data set of aero-engines. Results show that the proposed strategy outperforms the two benchmark maintenance strategies: classical periodic maintenance and emerging dynamic predictive maintenance.
Rocznik
Strony
387--394
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
autor
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
autor
Bibliografia
  • 1. Chen C, Lu N, Jiang B, Wang C. A risk-averse remaining useful life estimation for predictive maintenance. IEEE/CAA Journal of Automatica Sinica 2021; 8(2): 412-422, https://doi.org/10.1109/JAS.2021.1003835.
  • 2. Do P, Voisin A, Levrat E, Iung B. A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions. Reliability Engineering & System Safety 2015; 133: 22-32, https://doi.org/10.1016/j.ress.2014.08.011.
  • 3. Ellefsen AL, Bjorlykhaug E, Aesoy V, Ushakov S, Zhang H. Remaining useful life predictions for turbofan engine degradation using semisupervised deep architecture. Reliability Engineering & System Safety 2019; 183: 240-251, https://doi.org/10.1016/j.ress.2018.11.027.
  • 4. Emami-Mehrgani B, Neumann WP, Nadeau S, Bazrafshan M. Considering human error in optimizing production and corrective and preventive maintenance policies for manufacturing systems. Applied Mathematical Modelling 2016; 40(3): 2056-2074, https://doi.org/10.1016/j.apm.2015.08.013.
  • 5. Fan H, Hu C, Chen M, Zhou D. Cooperative predictive maintenance of repairable systems with dependent failure modes and resource constraint. IEEE Transactions on Reliability 2011; 60(1): 144-157, https://doi.org/10.1109/TR.2011.2104432.
  • 6. Huynh KT, Barros A, Bérenguer C. Multi-level decision-making for the predictive maintenance of k-out-of-n: F deteriorating systems. IEEE Transactions on Reliability 2015; 64(1): 94-117, https://doi.org/10.1109/TR.2014.2337791.
  • 7. Jasiulewicz-Kaczmarek M, Antosz K. Żywica P, Mazurkiewicz D, Sun B, Ren Y. Framework of machine criticality assessment with criteria interactions. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021; 23 (2): 207-220, https://doi.org/10.17531/ein.2021.2.1.
  • 8. Kozłowski E, Mazurkiewicz D, Żabiński T, Prucnal S, Sęp J. Machining sensor data management for operation-level predictive model. Expert Systems with Applications 2020; 159: 113600, https://doi.org/10.1016/j.eswa.2020.113600.
  • 9. Ma R, Yang T, Breaz E, Li Z, Briois P, Gao F. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Applied Energy 2018; 231:102-115, https://doi.org/10.1016/j.apenergy.2018.09.111
  • 10. Mahdavi M, Monsef H, Romero R. Reliability effects of maintenance on TNEP considering preventive and corrective repairs. IEEE Transactions on Power Systems 2016; 32(5): 3768-3781, https://doi.org/10.1109/TPWRS.2016.2640178.
  • 11. NASA. (Jun. 2020). Prognostic Data Repository. [Online]. Available: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-datarepository/
  • 12. Nguyen KTP, Medjaher K. A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliability Engineering & System Safety 2019; 188: 251-262, https://doi.org/10.1016/j.ress.2019.03.018.
  • 13. Nguyen KTP, Yeung T, Castanier B. Acquisition of new technology information for maintenance and replacement policies. International Journal of Production Research 2017; 55(8): 2212-2231, https://doi.org/10.1080/00207543.2016.1229069.
  • 14. Nguyen TPK, Castanier B, Yeung TG. Maintaining a system subject to uncertain technological evolution. Reliability Engineering & System Safety 2014; 128: 56-65, https://doi.org/10.1016/j.ress.2014.04.004.
  • 15. Papakonstantinou KG, Shinozuka M. Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory. Reliability Engineering & System Safety 2014; 130: 202-213, https://doi.org/10.1016/j.ress.2014.04.005.
  • 16. Papakonstantinou KG, Shinozuka M. Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation. Reliability Engineering & System Safety 2014; 130: 214-224, https://doi.org/10.1016/j.ress.2014.04.006.
  • 17. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation modeling for aircraft engine run-to-failure simulation. In Proceedings of 2008 International Conference on Prognostics & Health Management, Denver, CO, USA, 2008: 1-9, https://doi.org/10.1109/PHM.2008.4711414.
  • 18. Sheppard JW, Kaufman MA, Wilmering TJ. IEEE standards for prognostics and health management. In Proceedings of 2008 IEEE Autotestcon, Salt Lake City, UT, USA, 2008: 97-103, https://doi.org/10.1109/AUTEST.2008.4662592.
  • 19. Tahan M, Tsoutsanis E, Muhammad M, Karim ZA. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Applied Energy 2017; 198: 122-144, https://doi.org/10.1016/j.apenergy.2017.04.048.
  • 20. Wang C, Lu N, Cheng Y, Jiang B. A data-driven aero-engine degradation prognostic strategy. IEEE Transactions on Cybernetics 2021; 51(3):1531-1541, https://doi.org/10.1109/TCYB.2019.2938244.
  • 21. Wu Y, Yuan M, Dong S, Lin L, Liu Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 2018; 275:167-179, https://doi.org/10.1016/j.neucom.2017.05.063.
  • 22. You MY, Liu F, Wang W, Meng G. Statistically planned and individually improved predictive maintenance management for continuously monitored degrading systems. IEEE Transactions on Reliability 2010; 59(4): 744-753, https://doi.org/10.1109/TR.2010.2085572.
  • 23. Zhang J, Wang P, Yan R, Gao RX. Long short-term memory for machine remaining life prediction. Journal of Manufacturing Systems 2018;48: 78-86, https://doi.org/10.1016/j.jmsy.2018.05.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2623ee04-4a99-4237-98a7-cd1cf18ff5b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.