Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents stages of developing a prognostic model for implementing noise protection in an industrial hall. The main source of vibroacoustic problems is the glass hardening furnace, which was installed in a new production hall. It generates vibroacoustic problems at the furnace operators' work stations and at work stations at other devices placed in this hall and in the adjacent hall. These problems are mainly result from mistakes made during the preparation of the furnace placement, as well as the assembly of the machine and accessories. The conducted vibroacoustic tests were aimed at diagnosing problems and developing appropriate ways to minimize the risk of noise and vibration hazards. The basic research tool was to create the correct hall acoustic model, determine the sound power of partial sources and calibrate the model. Modelling the sound protection efficiency of each noise reducing element has allowed the selection of appropriate solutions in terms of acoustic efficiency and approximate application costs. Measurements were carried out according to standard procedures. The article presents only some of the results of vibroacoustic tests directly related to the developed acoustic model. Analysis of vibration paths and noise propagation, indication of assembly defects is a recommendation to formulate vibroacoustic requirements for newly installed devices.
Czasopismo
Rocznik
Tom
Strony
art. no. 2019136
Opis fizyczny
Bibliogr. 13 poz., il. kolor., wykr.
Twórcy
autor
- AGH-University of Science and Technology, Krakow Al. Mickiewicza 30 30-059 Krakow
autor
- AGH-University of Science and Technology, Krakow Al. Mickiewicza 30 30-059 Krakow
Bibliografia
- 1. M. Crocker, Encyclopedia of Acoustics, J. Wiley & Sons, Inc., New York, Ch. 77, 1997.
- 2. Z. Engel, J. Piechowicz, L. Stryczniewicz, Foundamentals of industrial vibroacoustics, AGH, Kraków, 2003.
- 3. L. L. Beranek, I. L. Vér, Noise and Vibration Control Engineering - Principles and Applications, John Wiley & Sons, New York (2006).
- 4. C. L. Christensen, J. H. Rindel, A new scattering method that combines roughness and diffraction effects, Forum Acousticum, Budapest. (2005).
- 5. C. L. Christensen, G. Koutsouris, Odeon Room Acoustics Software, User Manual, Ver. 12, 2nd Ed., Ch. 6.3. (2013).
- 6. A. Krokstad A., S. Strom, S.Sorsdal, Calculating the acoustical room response by the use of a ray tracing technique, J. of Sound and Vibration, 8(1)(1968) 118 - 125.
- 7. J. H. Rindel, Computer simulation techniques for acoustical design of rooms, Acoustics, Australia, 23 (1995) 81 - 86.
- 8. J. H. Rindel, Odeon and the scattering coefficient, Power Point Presentation from Odeon Workshop at Baltic-Nordic Acoustical meeting, Mariehamn, (2004).
- 9. L. Savioja, U. P.Svensson, Overview of geometrical room acoustic modeling techniques, JASA, 138(2) (2015) 708 - 730.
- 10. M. Vorländer, Computer simulations in room acoustics. Concepts and uncertainties, JASA, 133(3) (2013) 1203 - 1213.
- 11. PN-EN ISO 3746:2010, Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Survey method using an enveloping measurement surface over a reflecting plane.
- 12. PN-EN ISO 11202:2010, Acoustics - Noise emitted by machinery and equipment - Determination of emission sound pressure levels at a work station and at other specified positions applying approximate environmental corrections.
- 13. PN-ISO 9612:2011, Acoustics - Determination of occupational noise exposure - Engineering method.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-261edfbf-cffa-42b1-81df-3eea51269074