PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Steric Stabilization on Process of Au, Pt Nanoparticles Formation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanoparticles are very fascinating area of science not only due to their unique properties but also possibility of producing new more complex materials, which may find an application in modern chemistry, engineering and medicine. In process of nanoparticles formation very important aspect is a rate of individual stage i.e. reduction, nucleation and autocatalytic growth, because this knowledge allows for proper materials design, morphology manipulation, stability. The last one aspect can be realized using proper electrostatic, steric and electrosteric stabilization. However until now nobody reports and measures kinetic rates of all stages during process of particles formation in the presence of steric stabilizers. Thus, the main contribution of this paper is determination of individual rate constants for nanoparticles formation in the presence of steric stabilizers and their comparison to the system without stabilizer. For this purpose, an aqueous solution of Au(III) and Pt(IV) ions were mixed with steric stabilizers like PVA and PVP, and reduced using L-ascorbic acid as a mild and sodium borohydride as a strong reductant. As a results stable nanoparticles were formed and process of their formation was registered spectrophotometrically. From obtained kinetic curves the values of observed rate constants for reduction metal ions, slow nucleation and fast autocatalytic growth were determined using Watzky-Finke model. It was found that the addition of polymer affects the rate of the individual stages. The addition of steric stabilizers to gold ions reduced with L-ascorbic acid causes that the process of nucleation and autocatalytic growth slows down and the value of observed rate constants for nucleation changes from 3.79·10-3 (without polymer) to 7.15·10-5 s-1 (with PVA) and for growth changes from 1.15·103 (without polymer) to 0.48·102 s-1 M-1 (with PVA). However, the rate of the reduction reaction of Au(III) ions is practically unchanged. In case of using strong reductant the addition of polymer effects on the shape of kinetic curve for reduction of Au(III) and it suggests that mechanism is changed. In case of Pt(IV) ions reduction with L-ascorbic acid, the process speeds up a little when PVA was added. Determined values of observed rate constants for nucleation and growth platinum nanoparticles decrease twice comparing to the system without polymer. The reduction of Pt(IV) ions with sodium borohydride accelerates when PVP was added and slows down when PVA was used. Moreover, the size of obtained colloidal gold and platinum was also analysed using DLS method. Obtained results (rate constants) may be useful in the process of nanomaterials synthesis, in particular in microflow.
Twórcy
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Laboratory of Physical Chemistry and Electrochemistry, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] I. Khan, K. Saeed, I. Khan, Arab. J Chem. (2017). DOI: 10.1016/j.arabjc.2017.05.011 (in press).
  • [2] N. G. Bastús, J. Comenge, V. Puntes, Langmuir 27, (17) 11098-11105 (2011).
  • [3] D. A. Fleming, M. E. Williams, Langmuir 20, (8) 3021-3023 (2004).
  • [4] C. L. Nehl, H. Liao, J. H. Hafner, Nano Lett. 6, (4) 683-688 (2006).
  • [5] H. Wu, X. Ji, L. Zhao, S. Yang, R. Xie, W. Yang, Colloids Surf., A 415, 174-179 (2012).
  • [6] P. Alexandridis, Chem. Eng. Technol. 34, (1) 15-28 (2011).
  • [7] X. Chen, H. Zhu, Catalysis by Supported Gold Nanoparticles, in: D.L.A.D.S.P. Wiederrecht (Ed.) Comprehensive Nanoscience and Technology, Academic Press, Amsterdam, (2011)
  • [8] P. T. Sekoai, C.N.M. Ouma, S. P. du Preez, P. Modisha, N. Engelbrecht, D. G. Bessarabov, A. Ghimire, Fuel 237, 380-397 (2019).
  • [9] S. H. Kim, Curr. Appl. Phys. 18, (7) 810-818 (2018).
  • [10] W. J. Stark, Angew. Chem. Int. Ed. 50, 1242-1258 (2011).
  • [11] Z. Guo, P. J. Sadler, Angew. Chem. Int. Ed. 38, (11) 1512-1531 (1999).
  • [12] K. Chaloupka, Y. Malam, A.M. Seifalian, Trends Biotechnol. 28, (11) 580-588 (2010).
  • [13] A. F. Moreira, C. F. Rodrigues, C. A. Reis, E. C. Costa, I. J. Correia, Microporous Mesoporous Mater. 270, 168-179 (2018).
  • [14] P. Malik, T. K. Mukherjee, Int. J. Pharm. 553, (1) 483-509 (2018).
  • [15] E. E. Finney, R. G. Finke, J. Colloid Interface Sci. 317, 351-374 (2008).
  • [16] R. Patakfalvi, S. Papp, I. Dékány, J. Nanopart. Res. 9, 353-364 (2007).
  • [17] J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 11, 55-75 (1951).
  • [18] M. Wojnicki, K. Fitzner, M. Luty-Błocho, J. Colloid Interface Sci. 465, 190-199 (2016).
  • [19] Y. Zhou, H. Wang, W. Lin, L. Lin, Y. Gao, F. Yang, M. Du, W. Fang, J. Huang, D. Sun, J. Colloid Interface Sci. 407, 8-16 (2013).
  • [20] M. A. Watzky, R. G. Finke, J. Am. Chem. Soc. 119, (43) 10382-10400 (1997).
  • [21] J. Galanis, A. Sood, R. Gill, D. Harries, Colloids Surf., A 483, 239-247 (2015).
  • [22] M. Luty-Błocho, K. Pacławski, M. Wojnicki, K. Fitzner, Inorganica Chim. Acta 395, 189-196 (2013).
  • [23] L. Gmelin, Gmelin Handbook of inorganic and organometallic chemistry, (1992).
  • [24] K. Lemma, D. A. House, N. Retta, L.I. Elding, Inorganica Chim. Acta 331, (1) 98-108 (2002).
  • [25] M. Luty-Błocho, M. Wojnicki, K. Pacławski, K. Fitzner, Chem. Engin. J. 226, 46-51 (2013).
Uwagi
EN
1. This work was supported by the European Grant No. POIG.01.01.02-00-015/09-00.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-261c4c8a-6a78-4718-affb-ab68e838be87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.