Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In engineering disciplines, both in scientific and practical applications, systems with a tremendous number of degrees of freedom occur. Hence, there is a need for reducing the computational effort in investigating these systems. If the system behaviour has to be calculated for many time instances and/or load scenarios, the need for efficient calculations further increases. Model order reduction is a common procedure in order to cope with such large systems. The aim of model order reduction is to reduce the (computational) effort in solving the given task while still keeping main features of the respective system. One approach of model order reduction uses the proper orthogonal decomposition. This approach is applied to Mikota’s vibration chain, a linear vibration chain with remarkable properties, where two cases of an undamped and a damped structure are investigated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
511--521
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Chair of Structural Analysis, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg, Hamburg, Germany
autor
- Institute of Mechanics and Shell Structures, Technische Universität Dresden, Dresden, Germany
Bibliografia
- 1. Bamer F., Amiri A.K., Bucher C., 2017, A new model order reduction strategy adapted to nonlinear problems in earthquake engineering, Earthquake Engineering and Structural Dynamics, 46, 4, 537-559
- 2. Chatterjee A., 2000, An introduction to the proper orthogonal decomposition, Current Science, 78, 7, 808-818
- 3. Fangye Y.F., Weber W.E., Zastrau B.W., Balzani D., 2016, Some basic ideas for the simulation of wave propagation in microstructures using proper orthogonal decomposition, Proceedings in Applied Mathematics and Mechanics, 16, 1, 333-334
- 4. Feeny B.F., Kappagantu R., 1998, On the physical interpretation of proper orthogonal modes in vibrations, Journal of Sound and Vibration, 211, 4, 607-616
- 5. Freund R.W., 2003, Model reduction methods based on Krylov subspaces, Acta Numerica, 12, 2, 267-319
- 6. Golub G., Kahan W., 1965, Calculating the singular values and pseudo-inverse of a matrix, Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2, 2, 205-224
- 7. Gurgoze M., Muller P.C. , 1992, Optimal positioning of dampers in multi-body systems, Journal of Sound and Vibration, 158, 3, 517-530
- 8. Guyan R.J., 1965, Reduction of stiffness and mass matrices, AIAA Journal, 3, 2, 380-380
- 9. Kappagantu R., Feeny B.F., 1999, An “optimal” modal reduction of a system with frictional excitation, Journal of Sound and Vibration, 224, 5, 863-877
- 10. Kerschen G., Golinval J.-C., 2002, Physical interpretation of the proper orthogonal modes using the singular value decomposition, Journal of Sound and Vibration, 249, 5, 849-865
- 11. Kerschen G., Golinval J.-C., Vakakis A.F., Bergman L.A., 2005, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear Dynamics, 41, 1-3, 147-169
- 12. Kochendorffer R.K., 1963, Determinanten und Matrizen, B.G. Teubner Verlagsgesellschaft, Leipzig
- 13. Mikota J., 2001, Frequency tuning of chain structure multibody oscillators to place the natural frequencies at Ω1 and N − 1 integer multiples Ω2, ΩN , Zeitschrift fur Angewandte Mathematik und Mechanik, 81, S2, 201-202
- 14. Muller P.C., Gurg oze M. , 2006, Natural frequencies of a multi-degree-of-freedom vibration system, Proceedings in Applied Mathematics and Mechanics, 6, 1, 319-320
- 15. Muller P,C., Hou M. , 2007, On natural frequencies and eigenmodes of a linear vibration system, Zeitschrift f¨ur Angewandte Mathematik und Mechanik, 87, 5, 348-351
- 16. Muller P.C., Schiehlen W.O. ¨ , 1985, Linear Vibrations, M. Nijhoff Publishers, Dordrecht
- 17. Radermacher A., Reese S., 2013, A comparison of projection-based model reduction concepts in the context of nonlinear biomechanics, Archive of Applied Mechanics, 83, 8, 1193-1213
- 18. Weber W., Anders B., Muller P.C. ¨ , 2015, A proof on eigenfrequencies of a special linear vibration system, Zeitschrift f¨ur Angewandte Mathematik und Mechanik, 95, 5, 519-526
- 19. Weber W., Anders B., Zastrau B.W., 2008, Some damping characteristics of a chain structured vibration system, Proceedings in Applied Mathematics and Mechanics, 8, 1, 10391-10392
- 20. Weber W., Anders B., Zastrau B.W., 2013, Calculating the right-eigenvectors of a special vibration chain by means of modified Laguerre polynomials, Journal of Theoretical and Applied Mechanics, Sofia, 43, 4, 17-28
- 21. Weber W.E., Muller P.C., Anders B. ¨ , 2017, The remarkable structure of the mode shapes and eigenforces of a special multibody oscillator, Archive of Applied Mechanics, to appear, DOI: 10.1007/s00419-017-1327-9
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2619ef2b-d4bc-4dc2-9cfa-5600abbcaf02