PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Experimental study on the dynamic tensile mechanical properties of marble under water and oil conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the dynamic tensile properties and energy dissipation characteristics of marble in three different conditions: dry, water-saturated, and oil-saturated, a Brazilian disk splitting test was conducted using a 50 mm diameter Hopkinson pressure bar (SHPB) device. The findings indicate that the peak strain and dynamic tensile strength of the three conditions increase with strain rate, exhibiting a clear strain rate effect. Additionally, lubricating effects of water and oil weaken internal shear sliding friction, thus promoting crack expansion. Furthermore, immersion of fluid in marble weakens the cementation of internal mineral particles, leading to lower tensile strength of marble saturated with water and oil compared to dry marble under dynamic impact. When analyzing the energy dissipation of marble, both the absorption energy and dissipation energy density increase with oil strain rate, indicating a positive correlation. Moreover, numerical results obtained from ANSYS/LS-DYNA correspond well with experimental data, thus verifying and interpreting the experimental outcomes.
Rocznik
Strony
317--330
Opis fizyczny
Bibliogr. 20 poz., il., tab.
Twórcy
autor
  • College of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing, China
autor
  • Chongqing University, Chongqing China
  • Chongqing College of Architecture and Technology, Chongqing, China
autor
  • College of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing, China
Bibliografia
  • [1] ISRM Testing Commission, “Suggested method for determining tensile strength of rock materials”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 15, no. 3, pp. 99-103, 1978.
  • [2] A.R. Torabi, A. Campagnolo, and F. Berto, “Local strain energy density to predict mode II brittle fracture in Brazilian disk samples weakened by V-notches with end holes”, Materials & Design, vol. 69, pp. 22-29, 2015, doi: 10.1016/j.matdes.2014.12.037.
  • [3] F. Berto and M.R. Ayatollahi, “Fracture assessment of Brazilian disc samples weakened by blunt V-notches under mixed mode loading by means of local energy”, Materials & Design, vol. 32. no. 5, pp. 2858-2869, 2011, doi: 10.1016/j.matdes.2010.12.034.
  • [4] S. Huang, R. Chen, and K.W. Xia, “Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 2, no. 2, pp. 162-168, 2010, doi: 10.3724/SP.J.1235.2010.00162.
  • [5] S. Huang, F. Yan, K.W. Xia, et al., “An experimental study of the rate dependence of tensile strength softening of Longyou sandstone”, Rock Mechanics and Rock Engineering, vol. 43, pp. 677-683, 2010, doi: 10.1007/s00603-010-0083-8.
  • [6] Z.L. Zhou, X. Cai, Y. Zhao, et al., “Strength characteristics of dry and saturated rock at different strain rates”, Transactions of Nonferrous Metals Society of China, vol. 26, no. 7, pp. 1919-1925, 2016, doi: 10.1016/S1003-6326(16)64314-5.
  • [7] Z.L. Zhou, X. Cai, Y. Zhao, et al., “Influence of water content on mechanical properties of rock in both saturation and drying processes”, Rock Mechanics and Rock Engineering, vol. 49, no. 8, pp. 3009-3025, 2016, doi: 10.1007/s00603-016-0987-z.
  • [8] D.Y. Xi, B. Liu, S.Y. Bai, et al., “Anisotropy and strain rate effects of saturated rocks”, presented at Chinese Geophysical Society, 21-24 October 2000, Wuhan, China, 2000.
  • [9] F.Q. Gong, P.L. Zhang, and L. Xu, “Damage constitutive model of brittle rock under uniaxial compression based on linear energy dissipation law”, International Journal of Rock Mechanics and Mining Sciences, vol. 160, 2022, doi: 10.1016/j.ijrmms.2022.105273.
  • [10] Y. Deng, M. Chen, et al., “Theoretical analysis and experimental research on the energy dissipation of rock crushing based on fractal theory”, Journal of Natural Gas Science and Engineering, vol. 33, pp. 231-239, 2016, doi: 10.1016/j.jngse.2016.05.020.
  • [11] S. Gong, L. Zhou, et al., “Investigation of dynamic fracture behavior and energy dissipation of water-bearing coal under impact load”, Engineering Fracture Mechanics, vol. 275, 2022, doi: 10.1016/j.engfracmech.2022.108793.
  • [12] S. Gong and Y.X. Zhao, “Experimental study on the influence of bedding on dynamic fracture and energy dissipation of coal rock”, The Journal of Rock Mechanics and Engineering, vol. 36, no. S2, pp. 3723-3731, 2017, doi: 10.13722/j.cnki.jrme.2017.0630.
  • [13] Z.L. Wang, H.C. Wang, J.G. Wang, et al., “Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks”, Computers and Geotechnics, vol. 135, 2021, doi: 10.1016/j.compgeo.2021.104172.
  • [14] H. Cao and X.Y. Zhang, “Study on uniaxial impact compression characteristics of basalt fiber cement soil”, Archives of Civil Engineering, vol. 68, no. 1, pp. 667-668, 2022, doi: 10.24425/ace.2022.140193.
  • [15] X. B. Li and F.Q. Gong, “Reference method for determining the sample size in the rock SHPB test”, Journal of Vibration and Shock, vol. 32, no.17, pp. 24-28, 2013, doi: 10.13465/j.cnki.jvs.2013.17.005.
  • [16] F.J. Xie, J.S. Zhang, and J.H. Chen, “Dynamic damage model of rock under impact loads of compression and tension”, Journal of Central South University (Science and Technology), vol. 50, no. 2, pp. 420-427, 2019 [in Chinese].
  • [17] J. Zhu, J.H. Deng, Y.J. Ma, et al., “Experimental study on the competing effects of strain rate and water weakening on compressive strength of saturated rocks”, Engineering Geology, vol. 310, 2022, doi: 10.1016/j.enggeo. 2022.106873.
  • [18] C.Z. Wang, A.J. Chen, Z.Q. Li, et al., “Experimental and numerical investigation on penetration of clay masonry by small high-speed projectile", Defence Technology, vol. 17, no. 4, pp. 1514-1530, 2021, doi: 10.1016/j.dt. 2020.09.017.
  • [19] H.C. Li, D.S. Liu, L. Zhao, et al., “Study on parameters determination of Marble RHT Model”, Transactions of Beijing Institute of Technology, vol. 37, no. 8, pp. 801-806, 2017, doi: 10.15918/j.tbit1001-0645.2017.08.006.
  • [20] C. Reifarth, R. Castedo, A.P. Santos, et al., “Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads”, International Journal of Impact Engineering, vol. 156, 2021, doi: 10.1016/j.ijimpeng.2021.103939.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2610bae6-57db-4709-a1e9-094bbb13d160
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.