Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present a study on the automatic classification of speech acts in the domain of political communication, based on J. R. Searle's classification of illocutionary acts. Our research involves creating a dataset using the US State of the Union corpus and the UN General Debate corpus (UNGD) as data sources. To overcome limited labeled data, we employ a combination of weak supervision and active learning techniques for dataset creation and model training. Through various experiments, we investigate the influence of external and internal factors on speech act classification. In addition, we discuss the potential for further analysis of speech act usage, using the trained model on the UNGD corpus. The findings demonstrate the effectiveness of Transformer-based models for automatic speech act classification, highlight the benefits of weak supervision and active learning for dataset creation and model training, and underscore the potential for large-scale statistical analysis of speech act usage in the domain of political communication.
Rocznik
Tom
Strony
739--748
Opis fizyczny
Bibliogr. 32 poz., wykr., tab., il.
Twórcy
autor
- Leipzig University
autor
- Leipzig University
autor
- University of Stuttgart
autor
- Leipzig University
Bibliografia
- 1. J. L. Austin, How to do things with words. Cambridge, Mass., Harvard University Press, 2003., 1962.
- 2. J. R. Searle, “A classification of illocutionary acts,” Language in society, vol. 5, no. 1, pp. 1–23, 1976. http://dx.doi.org/10.1017/s0047404500006837
- 3. P. L. Berger and T. Luckmann, Die gesellschaftliche Konstruktion der Wirklichkeit: Eine Theorie der Wissenssoziologie. Frankfurt am Main: Fischer, 1966.
- 4. J. Habermas, Theorie des kommunikativen Handelns: Handlungsrationalität und gesellschaftliche Rationalisierung. Frankfurt: Suhrkamp, 1995, vol. 1.
- 5. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. doi: 10.5555/3295222.3295349. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
- 6. S. S. M. Hashim and S. Safwat, “Speech acts in political speeches,” Journal of Modern Education Review, vol. 5, no. 7, pp. 699–706, 2015. http://dx.doi.org/10.15341/jmer(2155-7993)/07.05.2015/008
- 7. M. Ulum, D. Sutopo, and W. Warsono, “A comparison between trump’s and clinton’s commissive speech act in america’s presidential campaign speech,” English Education Journal, vol. 8, no. 2, pp. 221–228, 2018.
- 8. A. Baturo, N. Dasandi, and S. J. Mikhaylov, “Understanding state preferences with text as data: Introducing the un general debate corpus,” Research & Politics, 2017. http://dx.doi.org/10.1177/2053168017712821
- 9. G. Peters and J. T. Woolley, “The state of the union, background and reference table,” The American Presidency Project, Santa Barbara, CA, 1999–2021. [Online]. Available: https://www.presidency.ucsb.edu/node/324107/
- 10. J. Duffield, “What are international institutions?” International Studies Review, vol. 9, pp. 1–22, 2007. http://dx.doi.org/10.1111/j.1468-2486.2007.00643.x
- 11. C. Daase, S. Engert, M.-A. Horelt, J. Renner, and R. Strassner, Apology and Reconciliation in International Relations: The Importance of Being Sorry. London: Routledge, 2015.
- 12. C. Moldovan, V. Rus, and A. C. Graesser, “Automated speech act classification for online chat.” MAICS, vol. 710, pp. 23–29, 2011.
- 13. B. Bayat, C. Krauss, A. Merceron, and S. Arbanowski, “Supervised speech act classification of messages in german online discussions,” in The Twenty-Ninth International Flairs Conference, 2016.
- 14. Y. Liu, K. Han, Z. Tan, and Y. Lei, “Using context information for dialog act classification in DNN framework,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017. http://dx.doi.org/10.18653/v1/D17-1231 pp. 2170–2178. [Online]. Available: https://aclanthology.org/D17-1231
- 15. S. Lee and J. Seo, “Korean speech act analysis system using hidden markov model with decision trees,” International Journal of Computer Processing of Oriental Languages, vol. 15, no. 03, pp. 231–243, 2002. http://dx.doi.org/ 10.1142/s0219427902000625
- 16. W. S. Choi, H. Kim, and J. Seo, “An integrated dialogue analysis model for determining speech acts and discourse structures,” IE- ICE TRANSACTIONS on Information and Systems, vol. 88, no. 1, pp. 150–157, 2005. http://dx.doi.org/ 10.1093/ietisy/e88-d.1.150
- 17. N. Song, K. Bae, and Y. Ko, “Effective korean speech-act classification using the classification priority application and a post-correction rules,” Journal of KIISE, vol. 43, no. 1, pp. 80–86, 2016. http://dx.doi.org/10.5626/jok.2016.43.1.80
- 18. R. Li, C. Lin, M. Collinson, X. Li, and G. Chen, “A dual-attention hierarchical recurrent neural network for dialogue act classification,” in Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL). Hong Kong, China: Association for Computational Linguistics, Nov. 2019. http://dx.doi.org/ 10.18653/v1/K19-1036 pp. 383–392. [Online]. Available: https://aclanthology.org/K19-1036
- 19. D. Yoo, Y. Ko, and J. Seo, “Speech-act classification using a convolutional neural network based on pos tag and dependency-relation bigram embedding,” IEICE Transactions on Information and Systems, vol. 100, no. 12, pp. 3081-3084, 2017. http://dx.doi.org/10.1587/transinf.2017edl8083
- 20. S. Subramanian, T. Cohn, and T. Baldwin, “Target based speech act classification in political campaign text,” in Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019). Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019. http://dx.doi.org/ 10.18653/v1/S19-1030 pp. 273–282. [Online]. Available: https://aclanthology.org/S19-1030
- 21. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019
- 22. P. Lison, J. Barnes, and A. Hubin, “skweak: Weak supervision made easy for NLP,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics, Aug. 2021. doi: 10.18653/v1/2021.acl-demo.40 pp. 337–346. [Online]. Available: https://aclanthology.org/2021.acl-demo.40
- 23. C. Schröder and A. Niekler, “A survey of active learning for text classification using deep neural networks,” 2020. [Online]. Available: https://arxiv.org/abs/2008.07267
- 24. C. Schröder, L. M¨uller, A. Niekler, and M. Potthast, “Small-text: Active learning for text classification in python,” 2021. [Online]. Available: https://arxiv.org/abs/2107.10314
- 25. V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter,” 2019. [Online]. Available: https: //arxiv.org/abs/1910.01108
- 26. G. James, T. Hastie, R. Tibshirani, and D. Witten, An Introduction to Statistical Learning: With Applications in R. Springer, 2013. ISBN 978-1-4614-7137-0
- 27. N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan, and O. Reblitz-Richardson, “Captum: A unified and generic model interpretability library for pytorch,” 2020.
- 28. S. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” 2017.
- 29. “Euromaidan,” page Version ID: 1153492594. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Euromaidan&oldid=1153492594
- 30. “Revolution of dignity,” page Version ID: 1154376283. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Revolution of Dignity&oldid=1154376283
- 31. K. H. Brodersen, F. Gallusser, J. Koehler, N. Remy, and S. L. Scott, “Inferring causal impact using Bayesian structural time-series models,” Annals of Applied Statistics, vol. 9, pp. 247–274, 2015. doi: 10.1214/14-aoas788
- 32. J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data,” in Proceedings of the Eighteenth International Conference on Machine Learning, ser. ICML ’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. doi: 10.5555/645530.655813. ISBN 1558607781 p. 282–289.
Uwagi
1. Thematic Tracks Regular Papers
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-260b47e9-1463-432d-b51a-cf7fcdafc7dc