Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents parameter estimation of a mathematical model regarding natural vibrations of a reinforced concrete slab. Parameter estimation is based on experiments conducted on a real reinforced concrete slab. Estimated parameters include: substitute longitudinal modulus of elasticity of the reinforced concrete slab, which takes into account longitudinal reinforcement, effective thickness of the reinforced concrete slab and coefficient of damping. Using appropriate criteria during, the process of parameter estimation of the reinforcement concrete slab models has a great impact on obtaining precise results. The estimation criteria are selected in order to achieve consistency of natural vibration frequencies along with the Frequency Response Function measured during experiments with those calculated with the mathematical model. The model and all the calculations have been made using MATLAB programming environment.
Czasopismo
Rocznik
Tom
Strony
407--420
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Poland
Bibliografia
- 1. Adamiec-Wójcik I., Wojciech S., 2012, Rigid finite element method in modelling of vibrations of electrostatic precipitators (in Polish), Modelowanie Inżynierskie, 43, 7-14
- 2. Berczyński S., Gutowski P., 2006, Identification of the dynamic models of machine tool supporting systems. Part I: An algorithm of the method, Journal of Vibration and Control, 12, 279-295
- 3. Berczyński S., Wróblewski T., 2005, Vibration of steel-concrete composite beams using the Timoshenko beam model, Journal of Vibration and Control, 11, 829-848
- 4. Berczyński S., Wróblewski T., 2010, Experimental verification of natural vibration models of steel-concrete composite beams, Journal of Vibration and Control, 16, 2057-2081
- 5. Ewins D.J., 2000, Modal Testing: Theory, Practice, and Application, Hertfordshire, Research Studies Press
- 6. He J., Fu Z.F., 2001, Modal Analysis, Butterworth-Heinemann
- 7. Kruszewski J., Sawiak S., Wittbrodt E., 1999, The Rigid Finite Element Method in Structural Dynamics (in Polish), WNT, Warszawa
- 8. Leissa A.W., 1973, The free vibration of rectangular plates, Journal of Sound and Vibration, 31, 3, 257-293
- 9. Liew K. M., Xiang Y., Kitipornchai S., 1993, Transverse vibration of thick rectangular plates. I – Comprehensive sets of boundary conditions, Computer and Structures, 49, 1, 1-29
- 10. Marchelek K., 1991, Dynamics of Machine Tools (in Polish), WNT, Warszawa 11. Silva C.W.D, 2000, Vibration. Fundamentals and Practice, CRC Press, Boca Raton, FL.
- 12. Szcześniak W., 2000, Selected Aspects of the Dynamics of Plates (in Polish), Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa
- 13. Uhl T., 1997, Computer-Aided Identification of Models of Mechanical Structures (in Polish), WNT, Warszawa
- 14. Wilde K., 2008, Modal Diagnostics of Civil Engineering Structures, Gdańsk University of Technology
- 15. Wittbrodt E., Adamiec-Wójcik I., Wojciech S., 2006, Dynamics of Flexible Multibody Systems. Rigid Finite Element Method, Springer-Verlag, Berlin, Heidelberg, New York
- 16. Wróblewski T., Berczyński S., Abramowicz M., 2013, Estimation of the parameters of the discrete model of a steelconcrete composite beam, Archives of Civil and Mechanical Engineering, 13, 209-219
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26000036-32e8-4439-906b-b0db606570dd