PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and Mapping of Soil Organic Matter in Doukkala Plain, Moroccan Semi-Arid Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Doukkala plains one of the largest irrigated areas in Morocco with a very important agricultural potential. With the integration of new technologies in agriculture, the plain has been subjected to intensive agriculture which has negative impacts on soil quality especially the soil organic matter loss. Therefore, the objective of this study is to combine remote sensing and modelling for monitoring of organic matter content. The obtained results showed that all the examined models showed satisfactory results in the prediction of organic matter with a coefficient of determination R2 ranging from 0.58 to 0.71 and the Root Mean Square Error (RMSE) varied 0.25 and 0.26%. Based on the findings, we can infer that this approach is both efficient and valid for modelling and mapping soil organic matter and may moreover be applied for other areas with same characteristics.
Słowa kluczowe
Twórcy
  • Laboratory of Geosciences and Environmental Techniques, Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, BP 20, 24000 El Jadida, Morocco
  • Laboratory of Geosciences and Environmental Techniques, Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, BP 20, 24000 El Jadida, Morocco
  • Department of Geology, Laboratory of Geoengineering and Environment, Research Group "Water Sciences and Environment Engineering", Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes BP 11201, Morocco
  • Laboratory of Geosciences and Environmental Techniques, Department of Earth Sciences, Faculty of Sciences, Chouaïb Doukkali University, BP 20, 24000 El Jadida, Morocco
  • Department of Geology, Laboratory of Geoengineering and Environment, Research Group "Water Sciences and Environment Engineering", Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes BP 11201, Morocco
Bibliografia
  • 1. Aghzar, N., Berdai, H., Bellouti, A., Soudi, B. 2002. Pollution nitrique des eaux souterraines au Tadla (Maroc). Revue des sciences de l’eau/Journal of Water Science, 15(2), 459–492.
  • 2. Akbari, M., Goudarzi, I., Tahmoures, M., Elveny, M., Bakhshayeshi, I. 2021. Predicting soil organic carbon by integrating Landsat 8 OLI, GIS and data mining techniques in semi-arid region. Earth Science Informatics, 14(4), 2113–2122.
  • 3. Al Masmoudi, Y., El Aissaoui, A., El Gharras, O., Ibno Namr, K. 2018. Évaluation de la compaction d’un vertisol par pénétromètrie horizontale et verticale. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 6(1), 48–54.
  • 4. Al Masmoudi, Y., Bouslihim, Y., Doumali, K., Hssaini, L., Ibno Namr, K. 2021. Use of machine learning in Moroccan soil fertility prediction as an alternative to laborious analyses. Modeling Earth Systems and Environment, 1–11.
  • 5. Amorim, H.C., Ashworth, A.J., Wienhold, B.J., Savin, M.C., Allen, F.L., Saxton, A.M., Curi, N. 2020. Soil quality indices based on long‐term conservation cropping systems management. Agrosystems, Geosciences & Environment, 3(1), e20036.
  • 6. Badraoui, M., Soudi, B., Farhat, A. 1998. Variation de la qualité des sols: Une base pour évaluer la durabilité de la mise en valeur agricole sous irrigation par pivot au Maroc. Etude et gestion des sols, 5, 227–234.
  • 7. Badraoui, M., Agbani M., Soudi, B. 2000. Evolution de la qualité des sols sous mise en valeur intensive au Maroc 2–3.
  • 8. Badraoui, M. 2006. Connaissance et utilisation des ressources en sol au Maroc. Rapp général ‘50 ans développement Hum Perspect, 2025, 91–117.
  • 9. Bhunia, G.S., Shit, P.K., Maiti, R. 2018. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. DOI: 10.1016/j.jssas.2016.02.001.
  • 10. Bouasria, A., Namr, K.I., Rahimi, A., Ettachfini, E.M. 2020. Soil organic matter estimation by using Landsat-8 pansharpened image and machine learning. In 2020 Fourth International Conference on Intelligent Computing in Data Sciences (ICDS). IEEE, 1–8.
  • 11. Bouasria, A., Namr, K.I., Rahimi, A., Ettachfini, E.M. 2021. Geospatial Assessment of Soil Organic Matter Variability at Sidi Bennour District in Doukkala Plain in Morocco. J. Ecol. Eng., 22(11).
  • 12. Brabant, P., Bied-Charreton, M., Schnepf, M.O. 2010. Une méthode d’évaluation et de cartographie de la dégradation des terres: proposition de directives normalisées. Retrieved from.
  • 13. C.P.C.S. 1967. Classification des sols. Grignon (France). Mimeo, 87.
  • 14. Coll, P., Le Velly, R., Le Cadre-Barthélemy, E., Villenave, C. 2012. La qualité des sols : associer perceptions et analyses des scientifiques et des viticulteurs. Etude et Gestion des Sols, 19(2), 79–88.
  • 15. DIAEA /DRHA /SEEN. 2008. Direction de l’irrigation et de l’aménagement de l’espace Agricole, Service des Expérimentations, des Essais et de la Normalisation -Rabat.
  • 16. El Achheb, A., Mania, J., Mudry, J. 2001. Processus de salinisation des eaux souterraines dans le bassin Sahel-Doukkala (Maroc occidental). In First International Conference on Saltwater Intrusion and Coastal Aquifers-Monitoring, Modeling and Management, Essaouira, Morocco.
  • 17. El Baghdadi, M.E., Jakani, K., Barakat, A., Bay, Y. 2011. Magnetic susceptibility and heavy metal contamination in agricultural soil of Tadla Plain. Journal Materials Environment Sciences, 2, 513–519.
  • 18. El Bourhrami, B., Namr, K.I., Et-Tayeb, H., Duraisamy, V. 2022. Application of Soil Quality Index to Assess the Status of Soils Submitted to Intensive Agriculture in the Irrigated Plain of Doukkala, Moroccan Semiarid Region. Ecological Engineering & Environmental Technology, 23(2), 129–143.
  • 19. Francos, N., Ogen, Y., Ben-Dor, E. 2021. Spectral assessment of organic matter with different composition using reflectance spectroscopy. Remote Sensing, 13(8), 1549.
  • 20. Goidts, E., Van Wesemael, B. 2007. Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955–2005). Geoderma, 141, 341–354.
  • 21. Guimarães, DV., Gonzaga MIS., Silva TO., Silva, TL., Silva Dias, N,. Matias, MIS. 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res, 126, 177–182.
  • 22. Henderson, T.L., Szilagyi, A., Baumgardner, M.F., Chen, C.C.T., Landgrebe, D.A. 1989. Spectral band selection for classification of soil organic matter content. Soil Science Society of America Journal, 53(6), 1778–1784.
  • 23. Ibno Namr, K., Mrabet, R. 2004. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco. Journal of African Earth Sciences, 39(3–5), 485–489.
  • 24. Jiang, Z., Lian, F., Wang, Z., Xing, B. 2020. The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 71(2), 520–542.
  • 25. Laamrani, A., Berg, A.A., Voroney, P., Feilhauer, H., Blackburn, L., March, M., Martin, R.C. 2019. Ensemble identification of spectral bands related to soil organic carbon levels over an agricultural field in Southern Ontario, Canada. Remote Sensing, 11(11), 1298.
  • 26. Lai, Y.Q., Wang, H.L., Sun, X.L. 2021. A comparison of importance of modelling method and sample size for mapping soil organic matter in Guangdong, China. Ecological Indicators, 126, 107618.
  • 27. Manlay, R.J., Feller, C., Swift, M.J. 2007. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystems & Environment, 119(3–4), 217–233.
  • 28. Naman, F., Soudi, B., Chiang, N.C., Zaoui, D. 2002. Fractionnement granulométrique de la matière organique de la terre collée aux pivots de la betterave à sucre dans les sols du périmètre irrigué des Doukkala au Maroc.
  • 29. Naman, F., Soudi, B., Adlouni, C.E., Chiang, C.N. 2015. Humic balance of soils under intensive farming: the case of soils irrigated perimeter of Doukkala in Morocco. J. Mater. Environ. Sci. 6, 3574–3581
  • 30. Oumenskou, H., El Baghdadi, M., Barakat, A., Aquit, M., Ennaji, W., Karroum, L.A., Aadraoui, M. 2019. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geology, Ecology, and Landscapes, 3(2), 83–94.
  • 31. Rahoui, M., Soudi, B., El Hadani, D., Benzakour, M. 1999. Évaluation de l’indice de la qualité des sols en zones irriguées: cas des Doukkala. Géo Observateur 10, 103–113.
  • 32. Rahoui, M., Soudi, B., Badraoui, M., Marcoen, J. M., Benzakour, M. 2000. Situation actuelle de la qualité des sols et des eaux dans le périmètre irrigué des Doukkala. Séminaire Intensification agricole et qualité des sols et des eaux, 2–3.
  • 33. Soudi, B., Rahoui, M., Chiang, C., Badraoui, M., Aboussaleh, A. 1999. Eléments méthodologiques de mise en place d’un système de suivi et de surveillance de la qualité des eaux et des sols dans les périmètres irrigués. Hommes Terre et eaux, 29(111), 13–22.
  • 34. Stenberg, B., Rossel, R.A.V., Mouazen, A.M., Wetterlind, J. 2010. Visible and near infrared spectroscopy in soil science. In Advances in agronomy. Academic Press, 107, 163–215.
  • 35. Stevens, A., Nocita, M., Tóth, G., Montanarella, L., van Wesemael, B. 2013. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PloS one, 8(6), e66409.
  • 36. Vasu, D., Singh, S.K., Ray, S.K., Duraisami, V.P., Ti-wary P., Chandran P., Nimkar A.M., Anantwar S.G. 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79.
  • 37. Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Young, I.M. 2016. Modeling soil processes: Review, key challenges, and new perspectives. Vadose zone journal, 15(5).
  • 38. Walkley, A., Black, I.A. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method: soil science, 37(1), 29‑38.
  • 39. Xie, R., Xiao, H. 2018. Application of Remote Sensing in the Estimation of Soil Organic Matter Content. Chemical Engineering Transactions, 66, 469–474.
  • 40. Ye, Z., Sheng, Z., Liu, X., Ma, Y., Wang, R., Ding, S., Wang, Q. 2021. Using Machine Learning Algorithms Based on GF-6 and Google Earth Engine to Predict and Map the Spatial Distribution of Soil Organic Matter Content. Sustainability, 13(24), 14055.
  • 41. Yu, L., Hong, Y., Geng, L., Zhou, Y., Zhu, Q., Cao, J., Nie, Y. 2015. Hyperspectral estimation of soil organic matter content based on partial least squares regression. Transactions of the Chinese Society of Agricultural Engineering, 31(14), 103–109.
  • 42. Yu, Q., Yao, T., Lu, H., Feng, W., Xue, Y., Liu, B. 2021. Improving estimation of soil organic matter content by combining Landsat 8 OLI images and environmental data: A case study in the river valley of the southern Qinghai-Tibet Plateau. Computers and Electronics in Agriculture, 185, 106144.
  • 43. Zhai, M. 2019. Inversion of organic matter content in wetland soil based on Landsat 8 remote sensing image. Journal of Visual Communication and Image Representation, 64, 102645.
  • 44. Zhu, H., Xu, Z., Jing, Y., Bi, R., Yang, W. 2018. Spatial variation and predictions of soil organic matter and total nitrogen based on VNIR reflectance in a basin of Chinese Loess Plateau. Journal of soil science and plant nutrition, 18(4), 1126–1141.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25fef858-224a-4007-b865-47a5af26259c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.